Hostname: page-component-76c49bb84f-qtd2s Total loading time: 0 Render date: 2025-07-06T10:14:10.498Z Has data issue: false hasContentIssue false

Comparison between Swan conductors and characteristic cycles

Published online by Cambridge University Press:  10 March 2010

Tomoyuki Abe*
Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguroku, Tokyo, Japan (email: abetomo@ms.u-tokyo.ac.jp)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we define Swan conductors for unit-root overconvergent F-isocrystals using the theory of arithmetic 𝒟-modules due to Berthelot. Our Swan conductors are compared with the Swan conductors for -adic sheaves constructed by Kato and Saito using a geometric method. As an application, we prove the integrality of Swan conductors in the sense of Kato and Saito under the ‘resolution of singularities’ assumption.

Information

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Berthelot, P., Cohomologie rigide et cohomologie rigide à support propre, première partie, Preprint (1996), Prépublication IRMAR 96-03, Université de Rennes.Google Scholar
[2]Berthelot, P., 𝒟-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4) 29 (1996), 185272.CrossRefGoogle Scholar
[3]Berthelot, P., 𝒟-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. 81 (2000).Google Scholar
[4]Berthelot, P., Introduction à la théorie arithmétique des 𝒟-modules, Astérisque 279 (2002), 180.Google Scholar
[5]Caro, D., 𝒟 modules arithmétiques surcohérents. Application aux fonctions L, Ann. Inst. Fourier 54 (2005), 19431996.CrossRefGoogle Scholar
[6]Caro, D., 𝒟-modules arithmétiques associés aux isocristaux surconvergents. Cas lisse, Preprint (2005), available at http://arxiv.org/abs/math/0510422, Bull. Soc. Math. France, to appear.Google Scholar
[7]Caro, D., 𝒟-modules arithmétiques surholonomes, Ann. Sci. École Norm. Sup. (4) 42 (2009), 141192.CrossRefGoogle Scholar
[8]Crew, R., F-isocrystals and p-adic representations, in Algebraic geometry, Proceedings of Symposia in Pure Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 1987), 111138.Google Scholar
[9]Fulton, W., Intersection theory, second edition (Springer, Berlin, 1998).CrossRefGoogle Scholar
[10]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, Berlin, 1977).CrossRefGoogle Scholar
[11]Kato, K., Class field theory, 𝒟-modules, and ramification on higher-dimensional schemes. I, Amer. J. Math. 116 (1994), 757784.CrossRefGoogle Scholar
[12]Kato, K. and Saito, T., Ramification theory for varieties over a perfect field, Ann. of Math. (2) 168 (2008), 3396.CrossRefGoogle Scholar
[13]Laumon, G., Sur la catégorie dérivée des 𝒟-modules filtrés, in Algebraic geometry, Lecture Notes in Mathematics, vol. 1016 (Springer, Berlin, 1983), 151237.CrossRefGoogle Scholar
[14]Tsuzuki, N., Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals, Duke Math. J. 111 (2002), 385418.CrossRefGoogle Scholar