Hostname: page-component-7dd5485656-hw7sx Total loading time: 0 Render date: 2025-10-28T12:33:51.075Z Has data issue: false hasContentIssue false

Compatibility of the Fargues–Scholze and Gan–Takeda local Langlands

Published online by Cambridge University Press:  28 October 2025

Linus Hamann*
Affiliation:
Science Center 1 Oxford Street, Cambridge, MA 02139, USA hamann@math.harvard.edu

Abstract

Given a prime p, a finite extension $L/\mathbb{Q}_{p}$, a connected p-adic reductive group $G/L$, and a smooth irreducible representation $\pi$ of G(L), Fargues and Scholze recently attached a semisimple L-parameter to such a $\pi$, giving a general candidate for the local Langlands correspondence. It is natural to ask whether this construction is compatible with known instances of the correspondence after semisimplification. For $G = \mathrm{GL}_{n}$ and its inner forms, Fargues and Scholze, and Hansen, Kaletha and Weinstein showed that the correspondence is compatible with the correspondence of Harris, and Taylor and Henniart. We verify a similar compatibility for $G =\mathrm{GSp}_{4}$ and its unique non-split inner form $G = \mathrm{GU}_{2}(D)$, where D is the quaternion division algebra over L, assuming that $L/\mathbb{Q}_{p}$ is unramified and $p > 2$. In this case, the local Langlands correspondence has been constructed by Gan and Takeda, and Gan and Tantono. Analogous to the case of $\mathrm{GL}_{n}$ and its inner forms, this compatibility is proven by describing the Weil group action on the cohomology of a local Shimura variety associated with $\mathrm{GSp}_{4}$, using basic uniformization of abelian-type Shimura varieties due to Shen, combined with various global results of Kret and Shin, and Sorensen on Galois representations in the cohomology of global Shimura varieties associated with inner forms of $\mathrm{GSp}_{4}$ over a totally real field. After showing the parameters are the same, we apply some ideas from the geometry of the Fargues–Scholze construction explored recently by Hansen. This allows us to give a more precise description of the cohomology of this local Shimura variety, verifying a strong form of the Kottwitz conjecture in the process.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anschütz, J. and Le-Bras, A.-C., Averaging functors in Fargues’ program for $GL_{n}$ , Preprint (2021), arXiv:2104.04701.Google Scholar
Arthur, J., The trace formula in invariant form, Ann. of Math. (2) 114 (1981), 174; MR 625344.10.2307/1971376CrossRefGoogle Scholar
Arthur, J., A stable trace formula. I. General expansions, J. Inst. Math. Jussieu 1 (2002), 175277; MR 1954821.10.1017/S1474748002000051CrossRefGoogle Scholar
Arthur, J., Automorphic representations of ${\rm GSp(4)}$ , in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, MD, 2004), 6581; MR 2058604.Google Scholar
Baily, W. L., Jr. and Borel, A., Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442528; MR 216035.10.2307/1970457CrossRefGoogle Scholar
Bertoloni-Meli, A., Hamann, L. and Nguyen, K.-H., Compatibility of Fargues–Scholze correspondence for unitary groups, Preprint (2022), arXiv:2207.13193.Google Scholar
Borel, A., Automorphic L-functions, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., 1977), Part 2, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 2761; MR 546608.10.1090/pspum/033.2/546608CrossRefGoogle Scholar
Borel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs, vol. 67, second edition (American Mathematical Society, Providence, RI, 2000); MR 1721403.Google Scholar
Boyer, P., Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale, Invent. Math. 138 (1999), 573629; MR 1719811.10.1007/s002220050354CrossRefGoogle Scholar
Boyer, P., Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177 (2009), 239280; MR 2511742.Google Scholar
Chan, P.-S. and Gan, W. T., The local Langlands conjecture for $\rm GSp(4)$ III: Stability and twisted endoscopy, J. Number Theory 146 (2015), 69133; MR 3267112.10.1016/j.jnt.2013.07.009CrossRefGoogle Scholar
Choiy, K., The local Langlands conjecture for the p-adic inner form of $\rm Sp_4$ , Int. Math. Res. Not. IMRN 2017 (2017), 18301889; MR 3658185.Google Scholar
Daniels, P., van Hoften, P., Kim, D. and Zhang, M., Igusa stacks and the cohomology of Shimura varieties, Preprint (2024), arXiv:2408.01348.Google Scholar
Dat, J.-F., Helm, D., Kurinczuk, R. and Moss, G., Moduli of Langlands parameters, J. Eur. Math. Soc. (JEMS) 27 (2025), 18271927.10.4171/jems/1599CrossRefGoogle Scholar
Fargues, L. and Scholze, P., Geometrization of the local Langlands correspondence, Preprint (2021), arXiv:2102.13459.Google Scholar
Frenkel, E., Gaitsgory, D. and Vilonen, K., On the geometric Langlands conjecture, J. Amer. Math. Soc. 15 (2002), 367417; MR 1887638.Google Scholar
Gaisan, I. and Imai, N., Non-semi-stable loci in hecke stacks and Fargues’ conjecture, Preprint (2016), arXiv:1608.07446.Google Scholar
Gaitsgory, D., On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math. (2) 160 (2004), 617682; MR 2123934.10.4007/annals.2004.160.617CrossRefGoogle Scholar
Gan, W. T. and Takeda, S., The local Langlands conjecture for Sp(4), Int. Math. Res. Not. IMRN 2010 (2010), 29873038; MR 2673717.10.1093/imrn/rnp203CrossRefGoogle Scholar
Gan, W. T. and Takeda, S., The local Langlands conjecture for ${\rm GSp}(4)$ , Ann. of Math. (2) 173 (2011), 18411882; MR 2800725.10.4007/annals.2011.173.3.12CrossRefGoogle Scholar
Gan, W. T. and Takeda, S., Theta correspondences for ${\rm GSp}(4)$ , Represent. Theory 15 (2011), 670718; MR 2846304.10.1090/S1088-4165-2011-00405-2CrossRefGoogle Scholar
Gan, W. T. and Tantono, W., The local Langlands conjecture for $\rm GSp(4)$ , II: The case of inner forms, Amer. J. Math. 136 (2014), 761805; MR 3214276.10.1353/ajm.2014.0016CrossRefGoogle Scholar
Gee, T. and Taïbi, O., Arthur’s multiplicity formula for ${\bf GSp}_4$ and restriction to ${\bf Sp}_4$ , J. Éc. polytech. Math. 6 (2019), 469535; MR 3991897.10.5802/jep.99CrossRefGoogle Scholar
Görtz, U., He, X. and Nie, S., Fully Hodge-Newton decomposable Shimura varieties, Peking Math. J. 2 (2019), 99154; MR 4060001.Google Scholar
Gross, B. H., Algebraic modular forms, Israel J. Math. 113 (1999), 6193; MR 1729443.Google Scholar
Hamann, L. and Imai, N., Dualizing complexes on the moduli of parabolic bundles, Preprint (2024), arXiv:2401.06342.Google Scholar
Hamann, L. and Lee, S. Y., Torsion vanishing for some Shimura varieties, Preprint (2023), arXiv:2309.08705.Google Scholar
Hansen, D., Period morphisms and variations of p-adic Hodge structures, Manuscript (2016), http://davidrenshawhansen.net/periodmapmod.pdf.Google Scholar
Hansen, D., On the supercuspidal cohomology of basic local Shimura varieties, J. Reine Angew. Math, to appear. Preprint (2020), http://davidrenshawhansen.net/middlev2.pdf.Google Scholar
Hansen, D., Kaletha, T. and Weinstein, J., On the Kottwitz conjecture for local shtuka spaces, Forum Math. Pi 10 (2022), e13; MR 4430954.10.1017/fmp.2022.7CrossRefGoogle Scholar
Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001), with an appendix by Vladimir G. Berkovich; MR 1876802.Google Scholar
Henniart, G., Une preuve simple des conjectures de Langlands pour ${\rm GL}(n)$ sur un corps p-adique, Invent. Math. 139 (2000), 439455; MR 1738446.10.1007/s002220050012CrossRefGoogle Scholar
Howe, R. and Piatetski-Shapiro, I. I., A counterexample to the ‘generalized Ramanujan conjecture’ for (quasi-) split groups, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., 1977), Part 1, Proceedings of Symposia of Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 315322; MR 546605.10.1090/pspum/033.1/546605CrossRefGoogle Scholar
Huber, R., A comparison theorem for l-adic cohomology, Compositio Math. 112 (1998), 217235; MR 1626021.Google Scholar
Ito, T. and Mieda, Y., Local saito-kurokawa a-packets and $\ell$ -adic cohomology of rapoport-zink tower for $GSp_{4}$ , Manuscript (2021), https://www.ms.u-tokyo.ac.jp/~mieda/pdf/RIMS-2021-proceedings.pdf.Google Scholar
Jiang, D. and Soudry, D., The multiplicity-one theorem for generic automorphic forms of ${\rm GSp}(4)$ , Pacific J. Math. 229 (2007), 381388; MR 2276516.Google Scholar
Kaletha, T., The local Langlands conjectures for non-quasi-split groups, in Families of automorphic forms and the trace formula, Simons Symposium (Springer, Cham, 2016), 217–257; MR 3675168.Google Scholar
Kazhdan, D., Cuspidal geometry of p-adic groups, J. Anal. Math. 47 (1986), 136; MR 874042.10.1007/BF02792530CrossRefGoogle Scholar
Kim, J.-L., Shin, S. W. and Templier, N., Asymptotic behavior of supercuspidal representations and Sato-Tate equidistribution for families, Adv. Math. 362 (2020), 106955; MR 4046074.10.1016/j.aim.2019.106955CrossRefGoogle Scholar
Koshikawa, T., On Eichler–Shimura relations for local shimura varieties, Preprint (2021), arXiv:2106.10603.Google Scholar
Kottwitz, R. E., Sign changes in harmonic analysis on reductive groups, Trans. Amer. Math. Soc. 278 (1983), 289297; MR 697075.10.1090/S0002-9947-1983-0697075-6CrossRefGoogle Scholar
Kottwitz, R. E., Isocrystals with additional structure, Compositio Math. 56 (1985), 201220; MR 809866.Google Scholar
Kottwitz, R. E., Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255339; MR 1485921.10.1023/A:1000102604688CrossRefGoogle Scholar
Kottwitz, R. E. and Shelstad, D., Foundations of twisted endoscopy, Astérisque 255 (1999); MR 1687096.Google Scholar
Kottwitz, R. E. and Shelstad, D., On splitting invariants and sign conventions in endoscopic transfer, Preprint (2012), arXiv:1201.5658.Google Scholar
Kret, A. and Shin, S. W., Galois representations for general symplectic groups, J. Eur. Math. Soc. (JEMS) 25 (2023), 75152; MR 4556781.10.4171/jems/1179CrossRefGoogle Scholar
Kurokawa, N., Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Invent. Math. 49 (1978), 149165; MR 511188.10.1007/BF01403084CrossRefGoogle Scholar
Labesse, J.-P. and Waldspurger, J.-L., La formule des traces tordue d’après le Friday Morning Seminar, CRM Monograph Series, vol. 31 (American Mathematical Society, Providence, RI, 2013), with a foreword by Robert Langlands [dual English/French text]; MR 3026269.10.1090/crmm/031CrossRefGoogle Scholar
Lafforgue, V., Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale, J. Amer. Math. Soc. 31 (2018), 719891; MR 3787407.10.1090/jams/897CrossRefGoogle Scholar
Lapid, E. M. and Rallis, S., On the local factors of representations of classical groups, in Automorphic representations, L-functions and applications: progress and prospects, Ohio State University Mathematical Research Institute Publications, vol. 11 (de Gruyter, Berlin, 2005), 309359; MR 2192828.Google Scholar
Li-Huerta, D. S., The plectic conjecture for local fields, J. Reine Angew. Math. (2025), https://doi.org/10.1515/crelle-2025-0046.CrossRefGoogle Scholar
Mann, L., The 6-functor formalism for $\mathbb{Z}_{\ell}$ and $\mathbb{Q}_{\ell}$ -sheaves on diamonds, Preprint (2022), arXiv:2209.08135.Google Scholar
Mirković, I. and Vilonen, K., Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95143; MR 2342692.10.4007/annals.2007.166.95CrossRefGoogle Scholar
Moeglin, C. and Waldspurger, J.-L., La formule des traces locale tordue, Mem. Amer. Math. Soc. 251 (2018), 1198; MR 3743601.Google Scholar
Nguyen, K. H., Un cas pel de la conjecture de Kottwitz, Preprint (2019), arXiv:1903.11505.Google Scholar
Rapoport, M., Appendix to on the p-adic cohomology of the Lubin-Tate tower, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), 811863; MR 3861564.Google Scholar
Rapoport, M. and Richartz, M., On the classification and specialization of F-isocrystals with additional structure, Compositio Math. 103 (1996), 153181; MR 1411570.Google Scholar
Rapoport, M. and Viehmann, E., Towards a theory of local Shimura varieties, Münster J. Math. 7 (2014), 273326; MR 3271247.Google Scholar
Renard, D., Représentations des groupes réductifs p-adiques, Cours Spécialisés, vol. 17 (Société Mathématique de France, Paris, 2010); MR 2567785.Google Scholar
Rosner, M. and Weissauer, R., Global liftings between inner forms $GSp_{4}$ , Preprint (2021), arXiv:2103.14715.Google Scholar
Schneider, P. and Stuhler, U., Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. Inst. Hautes Études Sci. 85 (1997), 97191; MR 1471867.10.1007/BF02699536CrossRefGoogle Scholar
Scholze, P., étale cohomology of diamonds, Preprint (2018), arXiv:1709.07343.Google Scholar
Scholze, P. and Weinstein, J., Moduli of p-divisible groups, Camb. J. Math. 1 (2013), 145237; MR 3272049.10.4310/CJM.2013.v1.n2.a1CrossRefGoogle Scholar
Scholze, P. and Weinstein, J., Berkeley lectures on p-adic geometry, Annals of Mathematics Studies, vol. 389 (Princeton University Press, Princeton, 2020).Google Scholar
Shahidi, F., A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273330; MR 1070599.10.2307/1971524CrossRefGoogle Scholar
Shen, X., On some generalized Rapoport-Zink spaces, Canad. J. Math. 72 (2020), 11111187; MR 4152538.10.4153/S0008414X19000269CrossRefGoogle Scholar
Shin, S. W., Automorphic Plancherel density theorem, Israel J. Math. 192 (2012), 83120; MR 3004076.10.1007/s11856-012-0018-zCrossRefGoogle Scholar
Sorensen, C. M., Galois representations attached to Hilbert-Siegel modular forms, Doc. Math. 15 (2010), 623670; MR 2735984.10.4171/dm/309CrossRefGoogle Scholar
Soudry, D., Automorphic forms on $GSp_{4}$ , in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday. Part II, Israel Mathematical Conference Proceedings vol. 3, eds S. Gelbart, R. Howe and P. Sarnak (Weizmann Science Press of Israel, Jerusalem, 1990), 291303; MR 1159106.Google Scholar
Townsend, N. J., Properties of Gamma factors for $GSp(4) \times GL(r)$ with r = 1, 2, PhD thesis, University of California, San Diego (ProQuest LLC, Ann Arbor, MI, 2013); MR 3211516.Google Scholar
Viehmann, E., On Newton strata in the $b_{dR}^{+}$ -grassmannian, Preprint (2021), arXiv:2101.07510.Google Scholar
Vogan, D. A., Jr. and Zuckerman, G. J., Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), 5190; MR 762307.Google Scholar
Weselmann, U., A twisted topological trace formula for Hecke operators and liftings from symplectic to general linear groups, Compositio Math. 148 (2012), 65120; MR 2881309.10.1112/S0010437X11005641CrossRefGoogle Scholar
Zhu, X., Coherent sheaves on the stack of Langlands parameters, Preprint (2020), arXiv:2008.02998.Google Scholar
Zou, K., The categorical form of Fargues’ conjecture for tori, Preprint (2022), arXiv:2202.13238.Google Scholar