Skip to main content Accessibility help

Connected components of affine Deligne–Lusztig varieties in mixed characteristic

  • Miaofen Chen (a1), Mark Kisin (a2) and Eva Viehmann (a3)
  • Please note a correction has been issued for this article.

We determine the set of connected components of minuscule affine Deligne–Lusztig varieties for hyperspecial maximal compact subgroups of unramified connected reductive groups. Partial results are also obtained for non-minuscule closed affine Deligne–Lusztig varieties. We consider both the function field case and its analog in mixed characteristic. In particular, we determine the set of connected components of unramified Rapoport–Zink spaces.

Hide All
[BT65]Borel, A. and Tits, J., Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55150.
[Bor98]Borovoi, M., Abelian Galois cohomology of reductive groups, Memoirs of the American Mathematical Society 626 (American Mathematical Society, Providence, RI, 1998).
[Bou02]Bourbaki, N., Lie groups and Lie algebras. Chapters 4–6 (Springer, Berlin, 2002), Translated from the 1968 French original by Andrew Pressley.
[Bro08]Broshi, M., Moduli of finite flat group schemes with $G$-structure, Thesis, University of Chicago (2008).
[BT72]Bruhat, F. and Tits, J., Groupes réductifs sur un corps local I, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 5251.
[Che14]Chen, M., Composantes connexes géométriques d’espaces de modules de groupes p-divisibles, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 723764.
[CS79]Colliot-Thélène, J.-L. and Sansuc, J.-J., Fibrés quadratiques et composantes connexes réelles, Math. Ann. 244 (1979), 105134.
[dJo95]de Jong, A. J., Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. Inst. Hautes Études Sci. 82 (1995), 596.
[EGA]Grothendieck, A. and Dieudonné, J., Elèments de géometrie algèbrique I, II, III, IV, Publ. Math. Inst. Hautes Études Sci. 4, 8, 11, 17, 20, 24, 28, 32 (1961–67).
[Gas10]Gashi, Q., On a conjecture of Kottwitz and Rapoport, Ann. Sci. Éc. Norm. Supér. 43 (2010), 10171038.
[GHKR06]Görtz, U., Haines, T. J., Kottwitz, R. E. and Reuman, D. C., Dimensions of some affine Deligne–Lusztig varieties, Ann. Sci. Éc. Norm. Supér. 39 (2006), 467511.
[Hab05]Haboush, W., Infinite dimensional algebraic geometry: algebraic structures on p-adic groups and their homogeneous spaces, Tohoku Math. J. (2) 57 (2005), 65117.
[HR08]Haines, T. and Rapoport, M., On parahoric subgroups, Adv. Math. 219 (2008), 188198.
[Hum95]Humphreys, J. E., Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43 (American Mathematical Society, Providence, RI, 1995).
[Kat79]Katz, N., Slope filtrations for F-crystals, Astérisque 63 (1979), 113163.
[Kis13]Kisin, M., Mod $p$points on Shimura varieties of abelian type, Preprint (2013).
[Kot84]Kottwitz, R. E., Shimura varieties and twisted orbital integrals, Math. Ann. 269 (1984), 287300.
[Kot85]Kottwitz, R. E., Isocrystals with additional structure, Compositio Math. 56 (1985), 201220.
[Kot97]Kottwitz, R. E., Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255339.
[Kot03]Kottwitz, R. E., On the Hodge–Newton decomposition for split groups, Int. Math. Res. Not. IMRN 26 (2003), 14331447.
[KR03]Kottwitz, R. E. and Rapoport, M., On the existence of F-crystals, Comment. Math. Helv. 78 (2003), 153184.
[Kre14]Kreidl, M., On p-adic lattices and Grassmannians, Math. Z. 276 (2014), 859888.
[Lus12]Lusztig, G., Unipotent almost characters of simple p-adic groups, Astérisque, to appear. Preprint (2012).
[Man08]Mantovan, E., On non-basic Rapoport–Zink spaces, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 671716.
[MV10]Mantovan, E. and Viehmann, E., On the Hodge–Newton filtration for p-divisible 𝓞-modules, Math. Z. 266 (2010), 193205.
[Nor76]Nori, M., On the representations of the fundamental group, Compositio Math. 33 (1976), 2941.
[Rap00]Rapoport, M., A positivity property of the Satake isomorphism, Manuscripta Math. 101 (2000), 153166.
[RR96]Rapoport, M. and Richartz, M., On the classification and specialization of F-isocrystals with additional structure, Compositio Math. 103 (1996), 153181.
[RG71]Raynaud, M. and Gruson, L., Critères de platitude et de projectivité, Invent. Math. 13 (1971), 189.
[RZ96]Rapoport, M. and Zink, T., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, NJ, 1996).
[SGA3]Demazure, M. and Grothendieck, A., Séminaire de Géométrie Algébrique du Bois Marie - 1962–64 - Schémas en groupes (SGA3), vol. 3, Lecture Notes in Mathematics, vol. 153 (Springer, Berlin, 1970).
[SW13]Scholze, P. and Weinstein, J., Moduli of p-divisible groups, Cambridge J. Math. 1 (2013), 145237.
[She14]Shen, X., On the Hodge–Newton filtration for p-divisible groups with additional structures, Int. Math. Res. Not. 2014(13) (2014), 35823631.
[Spr06]Springer, T. A., Twisted conjugacy in simply connected groups, Trans. Groups 11 (2006), 539545.
[Tit79]Tits, J., Reductive groups over local fields, in Automorphic forms, representations and L-functions (Corvallis 1977), Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 2969.
[Vie08]Viehmann, E., Connected components of affine Deligne–Lusztig varieties, Math. Ann. 340 (2008), 315333.
[VW13]Viehmann, E. and Wedhorn, T., Ekedahl-Oort and Newton strata for Shmura varieties of PEL type, Math. Ann. 356 (2013), 14931550.
[Win05]Wintenberger, J.-P., Existence de F-cristaux avec structures supplémentaires, Adv. Math. 190 (2005), 196224.
[Zin01]Zink, T., Windows for displays of p-divisible groups, in Moduli of abelian varieties (Text 1999), Progress in Mathematics, vol. 195 (Birkhäuser, Basel, 2001), 491518.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: