Skip to main content Accessibility help
×
Home

Exact functors on perverse coherent sheaves

  • Clemens Koppensteiner (a1)

Abstract

Inspired by symplectic geometry and a microlocal characterizations of perverse (constructible) sheaves we consider an alternative definition of perverse coherent sheaves. We show that a coherent sheaf is perverse if and only if $R{\rm\Gamma}_{Z}{\mathcal{F}}$ is concentrated in degree $0$ for special subvarieties $Z$ of $X$ . These subvarieties $Z$ are analogs of Lagrangians in the symplectic case.

Copyright

References

Hide All
[AB10]Arinkin, D. and Bezrukavnikov, R., Perverse coherent sheaves, Mosc. Math. J. 10 (2010), 3–29.
[Bea00]Beauville, A., Symplectic singularities, Invent. Math. 139 (2000), 541–549.
[Bez00]Bezrukavnikov, R., Perverse coherent sheaves (after Deligne), Preprint (2000), arXiv:math/0005152.
[BS98]Brodmann, M. P. and Sharp, R. Y., Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60 (Cambridge University Press, Cambridge, 1998), doi:10.1017/CBO9780511629204.
[Har66]Hartshorne, R., Residues and duality, Lecture Notes in Mathematics, vol. 20 (Springer, Berlin, 1966).
[Kas04]Kashiwara, M., t-structures on the derived categories of holonomic D-modules and coherent 𝓞-modules, Mosc. Math. J. 4 (2004), 847–868.
[KS94]Kashiwara, M. and Schapira, P., Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292 (Springer, Berlin, 1994).
[MV07]Mirkovi, I. and Vilonen, K., Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95–143; doi:10.4007/annals.2007.166.95.
[SGA2]Grothendieck, A. and Raynaud, M., Cohomologie locale des faisceaux co-hérents et théorémes de Lefschetz locaux et globaux (SGA2), Documents Mathématiques, vol. 4 (Société Mathématique de France, Paris, 2005); arXiv:math/0511279; MR 2171939.
[Wil13]Williamson, G., Vanishing of !-restriction of constructible sheaves, MathOverflow (2013), http://mathoverflow.net/a/129244.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Exact functors on perverse coherent sheaves

  • Clemens Koppensteiner (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.