Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-29T13:16:43.568Z Has data issue: false hasContentIssue false

Fundamental groups of rationally connected symplectic manifolds

Published online by Cambridge University Press:  27 August 2025

Alex Pieloch*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA pieloch@mit.edu

Abstract

We show that the fundamental group of every enumeratively rationally connected closed symplectic manifold is finite. In other words, if a closed symplectic manifold has a non-zero Gromov–Witten invariant with two point insertions, then it has finite fundamental group. We also show that if the spherical homology class associated with such a non-zero Gromov–Witten invariant is holomorphically indecomposable, then the rational second homology of the symplectic manifold has rank one.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abouzaid, M., McLean, M. and Smith, I., Complex cobordism, Hamiltonian loops and global Kuranishi charts , Preprint (2021), arXiv:2110.14320.Google Scholar
Bai, S. and Xu, G., An integral Euler cycle in normally complex orbifolds and $\mathbb{Z}$ -valued Gromov-Witten type invariants , Preprint (2022), arXiv:2201.02688.Google Scholar
Campana, F., On twistor spaces of the class $\mathcal{C}$ , J. Differential Geom. 33 (1991), 541549; MR 1094468.CrossRefGoogle Scholar
Cieliebak, K. and Mohnke, K., Symplectic hypersurfaces and transversality in Gromov-Witten theory , J. Symplectic Geom. 5 (2007), 281356; MR 2399678.10.4310/JSG.2007.v5.n3.a2CrossRefGoogle Scholar
Debarre, O., Higher-dimensional algebraic geometry (Universitext, Springer-Verlag, New York, 2001); MR 1841091.10.1007/978-1-4757-5406-3CrossRefGoogle Scholar
Fine, J. and Panov, D., Building symplectic manifolds using hyperbolic geometry, in Proceedings of the Gökova Geometry-Topology Conference 2009 (International Press, Somerville, MA, 2010), 124136; MR 2655306.Google Scholar
Fukaya, K. and Ono, K., Arnold conjecture and Gromov-Witten invariant , Topology 38 (1999), 9331048; MR 1688434.CrossRefGoogle Scholar
Hatcher, A., Algebraic topology (Cambridge University Press, Cambridge, 2002); MR 1867354.Google Scholar
Hirsch, M. W., Differential topology, Graduate Texts in Mathematics, vol. 33 (Springer-Verlag, New York, 1994), corrected reprint of the 1976 orginal; MR 1336822.Google Scholar
Hofer, H., Wysocki, K. and Zehnder, E., Applications of polyfold theory I: The polyfolds of Gromov-Witten theory , Mem. Amer. Math. Soc. 248 (2017), 1179; MR 3683060.Google Scholar
Kollár, J., Miyaoka, Y. and Mori, S., Rational connectedness and boundedness of Fano manifolds , J. Differential Geom. 36 (1992), 765779; MR 1189503.10.4310/jdg/1214453188CrossRefGoogle Scholar
Krestiachine, A., Donaldson hypersurfaces and gromov-witten invariants , PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät (2015).Google Scholar
Lee, J. M., Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, second edition (Springer, New York, 2013); MR 2954043.Google Scholar
Li, J. and Tian, G., Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds , in Topics in symplectic 4-manifolds (Irvine, CA, 1996), First International Press Lecture Series, vol. I (International Press, Cambridge, MA, 1998), 4783; MR 1635695.Google Scholar
McDuff, D. and Salamon, D., J-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, second edition (American Mathematical Society, Providence, RI, 2012); MR 2954391.Google Scholar
Palais, R. S., On the existence of slices for actions of non-compact Lie groups , Ann. of Math. (2) 73 (1961), 295323; MR 126506.10.2307/1970335CrossRefGoogle Scholar
Pardon, J., An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves , Geom. Topol. 20 (2016), 7791034; MR 3493097.10.2140/gt.2016.20.779CrossRefGoogle Scholar
Ruan, Y., Virtual neighborhoods and pseudo-holomorphic curves , Turkish J. Math. 23 (1999), 161--231, proceedings of the 6th Gökova Geometry-Topology Conference; MR 1701645.Google Scholar
Siebert, B., Gromov-Witten invariants of general symplectic manifolds, Preprint (1996), arXiv:dg-ga/9608005.Google Scholar
Thom, R., Quelques propriétés globales des variétés différentiables , Comment. Math. Helv. 28 (1954), 1786; MR 61823.10.1007/BF02566923CrossRefGoogle Scholar
Tian, Z., Symplectic geometry of rationally connected threefolds , Duke Math. J. 161 (2012), 803843; MR 2904093.10.1215/00127094-1548398CrossRefGoogle Scholar
Wittmann, J., The Banach manifold C k(M, N), Differential Geom. Appl. 63 (2019), 166185; MR 3903188.CrossRefGoogle Scholar
Zinger, A., Pseudocycles and integral homology , Trans. Amer. Math. Soc. 360 (2008), 27412765; MR 2373332.10.1090/S0002-9947-07-04440-6CrossRefGoogle Scholar