[AGS15a]
Aizenbud, A., Gourevitch, D. and Sahi, S.,
*Derivatives for representations of GL(**n*, ℝ) andGL(*n*, ℂ)
, Israel J. Math.
206 (2015), 1–38; see also arXiv:1109.4374 [math.RT].
[AGS15b]
Aizenbud, A., Gourevitch, D. and Sahi, S.,
*Twisted homology of the mirabolic nilradical*
, Israel J. Math.
206 (2015), 39–88; see also arXiv:1210.5389.
[BV80]
Barbasch, D. and Vogan, D. A.,
*The local structure of characters*
, J. Funct. Anal.
37 (1980), 27–55.

[BV82]
Barbasch, D. and Vogan, D. A.,
*Primitive ideals and orbital integrals in complex classical groups*
, Math. Ann.
259 (1982), 153–199.

[BV83]
Barbasch, D. and Vogan, D. A.,
*Primitive ideals and orbital integrals in complex exceptional groups*
, J. Algebra
80 (1983), 350–382.

[Bar03]
Baruch, E. M.,
*A proof of Kirillov’s conjecture*
, Ann. Math.
158 (2003), 207–252.

[BGP73]
Bernstein, I. N., Gel’fand, I. M. and Ponomarev, V. A.,
*Coxeter functors, and Gabriel’s theorem*
, Uspehi Mat. Nauk
28 (1973), 19–33.

[BZ76]
Bernstein, I. N. and Zelevinsky, A. V.,
*Representations of the group **Gl* (*N*, *F*), where *F* is a non-Archimedean local field
, Uspekhi Mat. Nauk
31 (1976), 5–70.

[BZ77]
Bernstein, I. N. and Zelevinsky, A. V.,
*Induced representations of reductive p-adic groups. I*
, Ann. Sci. Éc. Norm. Supér. (4)
10 (1977), 441–472.

[BB82]
Borho, W. and Brylinski, J.-L.,
*Differential operators on homogeneous spaces, I*
, Invent. Math.
69 (1982), 437–476.

[Bou75]
Bourbaki, N., Groupes et algebres de Lie (Hermann, Paris, 1975), Chap. 7 et 8. fasc. XXXVIII.

[BH03]
Bushnell, C. and Henniart, G.,
*Generalized Whittaker models and the Bernstein center*
, Amer. J. Math.
125 (2003), 513–547.

[Cas89]
Casselman, W.,
*Canonical extensions of Harish-Chandra modules to representations of G*
, Canad. J. Math.
XLI (1989), 385–438.

[dCl91]
du Cloux, F.,
*Sur les représentations différentiables des groupes de Lie algébriques*
, Ann. Sci. Éc. Norm. Supér. (4)
24 (1991), 257–318.

[Del80]
Deligne, P.,
*La conjecture de Weil. II*
, Publ. Math. Inst. Hautes Études Sci.
52 (1980), 137–252.

[DM78]
Dixmier, J. and Malliavin, P.,
*Factorisations de fonctions et de vecteurs indefiniment differentiables*
, Bull. Sci. Math. (2)
102 (1978), 307–330.

[Gab62]
Gabriel, P.,
*Des categories abeliennes*
, Bull. Soc. Math. France
90 (1962), 323–448.

[Gab72]
Gabriel, P.,
*Unzerlegbare Darstellungen I*
, Manuscripta Math.
6 (1972), 71–103.

[Gin06]
Ginzburg, D.,
*Certain conjectures relating unipotent orbits to automorphic representations*
, Israel J. Math.
151 (2006), 323–355.

[GRS99]
Ginzburg, D., Rallis, S. and Soudry, D.,
*On a correspondence between cuspidal representations of **GL*
_{2n
} and ˜*Sp*
_{2n
}
, J. Amer. Math. Soc.
12 (1999), 849–907.

[GRS11]
Ginzburg, D., Rallis, S. and Soudry, D., The descent map from automorphic representations of *GL* (*n*) to classical groups (World Scientific, Hackensack, NJ, 2011).

[GZ14]
Gomez, R. and Zhu, C.-B.,
*Local theta lifting of generalized Whittaker models associated to nilpotent orbits*
, Geom. Funct. Anal.
24 (2014), 796–853.

[GS13]
Gourevitch, D. and Sahi, S.,
*Associated varieties, derivatives, Whittaker functionals, and rank for unitary representations of **GL* (*n*)
, Selecta Math. (N.S.)
19 (2013), 141–172.

[GS15]
Gourevitch, D. and Sahi, S.,
*Degenerate Whittaker models for real reductive groups*
, Amer. J. Math.
137 (2015), 439–472; see also arXiv:1210.4064.
[Har12]
Harris, B.,
*Tempered representations and nilpotent orbits*
, Represent. Theory
16 (2012), 610–619.

[How81]
Howe, R.,
*Wave front sets of representations of Lie groups*
, in Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Institute of Fundamental Research Studies in Mathematics, vol. 10 (Tata Institute of Fundamental Research, Bombay, 1981), 117–140.

[Jia07]
Jiang, D.,
*Periods of automorphic forms*
, in Proceedings of the international conference on complex geometry and related fields, Studies in Advanced Mathematics, vol. 39 (American Mathematical Society and International Press, Providence, RI, 2007), 125–148.

[JLS14]
Jiang, D., Liu, B. and Savin, G., *Raising nilpotent orbits in wave-front sets*, Preprint (2014), arXiv:1412.8742.
[Jos80]
Joseph, A.,
*Goldie rank in the enveloping algebra of a semisimple Lie algebra, I, II*
, J. Algebra
65 (1980), 269–306.

[Jos85]
Joseph, A.,
*On the associated variety of a primitive ideal*
, J. Algebra
93 (1985), 509–523.

[Kaw85]
Kawanaka, N.,
*Generalized Gelfand–Graev representations and Ennola duality*
, in Algebraic groups and related topics, Advanced Studies in Pure Mathematics, vol. 6 (North-Holland, Amsterdam, 1985), 175–206.

[Kos59]
Kostant, B.,
*The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group*
, Amer. J. Math.
81 (1959), 973–1032.

[Kos78]
Kostant, B.,
*On Whittaker vectors and representation theory*
, Invent. Math.
48 (1978), 101–184.

[LM15a]
Lapid, E. and Mao, Z.,
*Model transition for representations of metaplectic type*
, Int. Math. Res. Not. IMRN
2015 (2015), 9486–9568, doi:10.1093/imrn/rnu225; see also arXiv:1403.6787.
[LM15b]
Loke, H. Y. and Ma, J.-J.,
*Invariants and **K*-spectrums of local theta lifts
, Compositio Math.
151 (2015), 179–206; see also arXiv:1302.1031.
[Mat87]
Matumoto, H.,
*Whittaker vectors and associated varieties*
, Invent. Math.
89 (1987), 219–224.

[Mat90]
Matumoto, H.,
*
**C*
^{-∞
}-Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations
, Ann. Sci. Éc. Norm. Supér. (4)
23 (1990), 311–367.

[Mat92]
Matumoto, H.,
*
**C*
^{-∞
}-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets
, Compositio Math.
82 (1992), 189–244.

[Moe96]
Moeglin, C.,
*Front d’onde des representations des groupes classiques p-adiques*
, Amer. J. Math.
118 (1996), 1313–1346.

[MW87]
Moeglin, C. and Waldspurger, J. L.,
*Modeles de Whittaker degeneres pour des groupes p-adiques*
, Math. Z.
196 (1987), 427–452.

[NP73]
Novodvorskii, M. E. and Piatetski-Shapiro, I.,
*Generalized Bessel models for a symplectic group of rank 2*
, Mat. Sb. (N.S.)
90 (1973), 246–256 (in Russian).

[Pou72]
Poulsen, N. S.,
*On **C*
^{
∞
}-vectors and intertwining bilinear forms for representations of Lie groups
, J. Funct. Anal.
9 (1972), 87–120.

[Prz91]
Przebinda, T.,
*Characters, dual pairs, and unipotent representations*
, J. Funct. Anal.
98 (1991), 59–96.

[Ros95]
Rossmann, W.,
*Picard–Lefschetz theory and characters of a semisimple Lie group*
, Invent. Math.
121 (1995), 579–611.

[Sah89]
Sahi, S.,
*On Kirillov’s conjecture for Archimedean fields*
, Compositio Math.
72 (1989), 67–86.

[SV00]
Schmid, W. and Vilonen, K.,
*Characteristic cycles and wave front cycles of representations of reductive Lie groups*
, Ann. of Math. (2)
151 (2000), 1071–1118.

[Sha74]
Shalika, J. A.,
*The multiplicity one theorem for GL*_{
n
}
, Ann. of Math. (2)
100 (1974), 171–193.

[Tre67]
Treves, F., Topological vector spaces, distributions and kernels (Academic Press, New York, 1967).

[Var14]
Varma, S.,
*On a result of Moeglin and Waldspurger in residual characteristic 2*
, Math. Z.
277 (2014), 1027–1048.

[Vog78]
Vogan, D. A.,
*Gelfand–Kiriliov dimension for Harish-Chandra modules*
, Invent. Math.
48 (1978), 75–98.

[Vog91]
Vogan, D. A.,
*Associated varieties and unipotent representations*
, in Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progress in Mathematics, vol. 101 (Birkhäuser, Boston, MA, 1991), 315–388.

[Wal88]
Wallach, N. R., Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals, Advanced Studies in Mathematics, vol. 14 (Academic Press, Boston, MA, 1988), 123–151.

[Wal92]
Wallach, N., Real reductive groups II, Pure and Applied Mathematics, vol. 132 (Academic Press, Boston, MA, 1992).

[Yam86]
Yamashita, H.,
*On Whittaker vectors for generalized Gelfand–Graev representations of semisimple Lie groups*
, J. Math. Kyoto Univ.
26 (1986), 263–298.

[Yam01]
Yamashita, H.,
*Cayley transform and generalized Whittaker models for irreducible highest weight modules*
, in Nilpotent Orbits, Associated Cycles and Whittaker Models for Highest weight Representations, Astérisque **273**
, (2001), 81–137.

[Zel80]
Zelevinsky, A. V.,
*Induced representations of reductive p-adic groups. II. On irreducible representations of **Gl* (*n*)
, Ann. Sci. Éc. Norm. Supér. (4)
13 (1980), 165–210.