Skip to main content
×
Home

Holomorphic Legendrian curves

  • Antonio Alarcón (a1), Franc Forstnerič (a2) and Francisco J. López (a3)
Abstract

In this paper we study holomorphic Legendrian curves in the standard holomorphic contact structure on $\mathbb{C}^{2n+1}$ for any $n\in \mathbb{N}$ . We provide several approximation and desingularization results which enable us to prove general existence theorems, settling some of the open problems in the subject. In particular, we show that every open Riemann surface $M$ admits a proper holomorphic Legendrian embedding $M{\hookrightarrow}\mathbb{C}^{2n+1}$ , and we prove that for every compact bordered Riemann surface $M={M\unicode[STIX]{x0030A}}\,\cup \,bM$ there exists a topological embedding $M{\hookrightarrow}\mathbb{C}^{2n+1}$ whose restriction to the interior is a complete holomorphic Legendrian embedding ${M\unicode[STIX]{x0030A}}{\hookrightarrow}\mathbb{C}^{2n+1}$ . As a consequence, we infer that every complex contact manifold $W$ carries relatively compact holomorphic Legendrian curves, normalized by any given bordered Riemann surface, which are complete with respect to any Riemannian metric on $W$ .

Copyright
References
Hide All
[Abr63] Abraham R., Transversality in manifolds of mappings , Bull. Amer. Math. Soc. 69 (1963), 470474; MR 0149495.
[ADFL15a] Alarcón A., Drinovec Drnovšek B., Forstnerič F. and López F. J., Minimal surfaces in minimally convex domains, Preprint (2015), arXiv:1510.04006 [math.DG].
[ADFL15b] Alarcón A., Drinovec Drnovšek B., Forstnerič F. and López F. J., Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves , Proc. Lond. Math. Soc. (3) 111 (2015), 851886; MR 3407187.
[AF13] Alarcón A. and Forstnerič F., Every bordered Riemann surface is a complete proper curve in a ball , Math. Ann. 357 (2013), 10491070; MR 3118624.
[AF14] Alarcón A. and Forstnerič F., Null curves and directed immersions of open Riemann surfaces , Invent. Math. 196 (2014), 733771; MR 3211044.
[AF15] Alarcón A. and Forstnerič F., The Calabi–Yau problem, null curves, and Bryant surfaces , Math. Ann. 363 (2015), 913951; MR 3412347.
[AFL16a] Alarcón A., Forstnerič F. and López F. J., Every meromorphic function is the Gauss map of a conformal minimal surface, Preprint (2016), arXiv:1604.00514 [math.DG].
[AFL16b] Alarcón A., Forstnerič F. and López F. J., New complex analytic methods in the study of non-orientable minimal surfaces in  inline-graphic $\mathbb{R}^{n}$ , Mem. Amer. Math. Soc., to appear. Preprint (2016), arXiv:1603.01691 [math.DG].
[AFL16c] Alarcón A., Forstnerič F. and López F. J., Embedded minimal surfaces in ℝ n , Math. Z. 283 (2016), 124; MR 3489056.
[AGL16] Alarcón A., Globevnik J. and López F. J., A construction of complete complex hypersurfaces in the ball with control on the topology, J. Reine Angew. Math., to appear, doi:10.1515/crelle-2016-0061 (online first version).
[AL12] Alarcón A. and López F. J., Minimal surfaces in ℝ3 properly projecting into ℝ2 , J. Differential Geom. 90 (2012), 351381; MR 2916039.
[AL13] Alarcón A. and López F. J., Null curves in ℂ3 and Calabi–Yau conjectures , Math. Ann. 355 (2013), 429455; MR 3010135.
[AL14] Alarcón A. and López F. J., Properness of associated minimal surfaces , Trans. Amer. Math. Soc. 366 (2014), 51395154; MR 3240920.
[AL15] Alarcón A. and López F. J., Approximation theory for nonorientable minimal surfaces and applications , Geom. Topol. 19 (2015), 10151062; MR 3336277.
[AL16] Alarcón A. and López F. J., Complete bounded embedded complex curves in ℂ2 , J. Eur. Math. Soc. (JEMS) 18 (2016), 16751705; MR 3519537.
[Bry82] Bryant R. L., Conformal and minimal immersions of compact surfaces into the 4-sphere , J. Differential Geom. 17 (1982), 455473; MR 679067.
[Cho39] Chow W. L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung , Math. Ann. 117 (1939), 98105; MR 0001880.
[DF12] Drinovec Drnovšek B. and Forstnerič F., The Poletsky–Rosay theorem on singular complex spaces , Indiana Univ. Math. J. 61 (2012), 14071423; MR 3085613.
[Eli89] Eliashberg Y., Classification of overtwisted contact structures on 3-manifolds , Invent. Math. 98 (1989), 623637; MR 1022310.
[Eli93] Eliashberg Y., Classification of contact structures on R 3 , Int. Math. Res. Not. IMRN 1993 (1993), 8791; MR 1208828.
[For11] Forstnerič F., Stein manifolds and holomorphic mappings: the homotopy principle in complex analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, vol. 56 (Springer, Heidelberg, 2011); MR 2975791.
[For17] Forstnerič F., Hyperbolic complex contact structures on  inline-graphic $\mathbb{C}^{2n+1}$ , J. Geom. Anal., to appear, doi:10.1007/s12220-017-9800-9 (online first version).
[FW09] Forstnerič F. and Wold E. F., Bordered Riemann surfaces in ℂ2 , J. Math. Pures Appl. (9) 91 (2009), 100114; MR 2487902.
[Gei08] Geiges H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109 (Cambridge University Press, Cambridge, 2008); MR 2397738.
[Gei12] Geiges H., Contact structures and geometric topology , in Global differential geometry, Springer Proceedings in Mathematics, vol. 17 (Springer, Heidelberg, 2012), 463489; MR 3289851.
[Glo15] Globevnik J., A complete complex hypersurface in the ball of ℂ N , Ann. of Math. (2) 182 (2015), 10671091; MR 3418534.
[Gro96] Gromov M., Carnot–Carathéodory spaces seen from within , in Sub-Riemannian geometry, Progress in Mathematics, vol. 144 (Birkhäuser, Basel, 1996), 79323; MR 1421823.
[GN67] Gunning R. C. and Narasimhan R., Immersion of open Riemann surfaces , Math. Ann. 174 (1967), 103108; MR 0223560 (36 #6608).
[LeB95] LeBrun C., Fano manifolds, contact structures, and quaternionic geometry , Internat. J. Math. 6 (1995), 419437; MR 1327157.
[LM07] Landsberg J. M. and Manivel L., Legendrian varieties , Asian J. Math. 11 (2007), 341359; MR 2372722.
[MUY14] Martín F., Umehara M. and Yamada K., Flat surfaces in hyperbolic 3-space whose hyperbolic Gauss maps are bounded , Rev. Mat. Iberoam. 30 (2014), 309316; MR 3186941.
[Mer51] Mergelyan S. N., On the representation of functions by series of polynomials on closed sets , Dokl. Akad. Nauk SSSR (N.S.) 78 (1951), 405408; MR 0041929.
[Mos65] Moser J., On the volume elements on a manifold , Trans. Amer. Math. Soc. 120 (1965), 286294; MR 0182927.
[Seg26] Segre B., Sulle curve algebriche le cui tangenti appartengono al massimo numero di complessi lineari indipendenti , Memorie Accad. d. L. Roma (6) 2 (1926), 577592.
[Sus73a] Sussmann H. J., Orbits of families of vector fields and integrability of distributions , Trans. Amer. Math. Soc. 180 (1973), 171188; MR 0321133.
[Sus73b] Sussmann H. J., Orbits of families of vector fields and integrability of systems with singularities , Bull. Amer. Math. Soc. 79 (1973), 197199; MR 0310922.
[Yan77a] Yang P., Curvature of complex submanifolds of C n , in Several complex variables, Williamstown, MA, 1975, Proceedings of Symposia in Pure Mathematics, vol. 30, part 2 (American Mathematical Society, Providence, RI, 1977), 135137; MR 0450606.
[Yan77b] Yang P., Curvatures of complex submanifolds of C n , J. Differential Geom. 12 (1978), 499511; MR 512921.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between 29th June 2017 - 21st November 2017. This data will be updated every 24 hours.