Skip to main content
×
×
Home

The homotopy theory of polyhedral products associated with flag complexes

  • Taras Panov (a1) (a2) (a3) and Stephen Theriault (a4)
Abstract

If $K$ is a simplicial complex on $m$ vertices, the flagification of $K$ is the minimal flag complex $K^{f}$ on the same vertex set that contains $K$ . Letting $L$ be the set of vertices, there is a sequence of simplicial inclusions $L\stackrel{}{\longrightarrow }K\stackrel{}{\longrightarrow }K^{f}$ . This induces a sequence of maps of polyhedral products $(\text{}\underline{X},\text{}\underline{A})^{L}\stackrel{g}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K}\stackrel{f}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K^{f}}$ . We show that $\unicode[STIX]{x1D6FA}f$ and $\unicode[STIX]{x1D6FA}f\circ \unicode[STIX]{x1D6FA}g$ have right homotopy inverses and draw consequences. For a flag complex $K$ the polyhedral product of the form $(\text{}\underline{CY},\text{}\underline{Y})^{K}$ is a co- $H$ -space if and only if the 1-skeleton of $K$ is a chordal graph, and we deduce that the maps $f$ and $f\circ g$ have right homotopy inverses in this case.

Copyright
References
Hide All
[BBCG10] Bahri, A., Bendersky, M., Cohen, F. R. and Gitler, S., The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces , Adv. Math. 225 (2010), 16341668.
[BBCG12] Bahri, A., Bendersky, M., Cohen, F. R. and Gitler, S., Cup-products for the polyhedral product functor , Math. Proc. Cambridge Philos. Soc. 153 (2012), 457469.
[BP02] Buchstaber, V. M. and Panov, T. E., Torus actions and their applications in topology and combinatorics, University Lecture Series, vol. 24 (American Mathematical Society, Providence, RI, 2002).
[BP15] Buchstaber, V. M. and Panov, T. E., Toric topology, Mathematical Surveys and Monographs, vol. 204 (American Mathematical Society, Providence, RI, 2015).
[FT09] Félix, Y. and Tanré, D., Rational homotopy of the polyhedral product functor , Proc. Amer. Math. Soc. 137 (2009), 891898.
[FG65] Fulkerson, D. R. and Gross, O., Incidence matrices and interval graphs , Pacific J. Math 15 (1965), 835855.
[Gan70] Ganea, T., Cogroups and suspensions , Invent. Math. 9 (1970), 185197.
[GPTW16] Grbić, J., Panov, T., Theriault, S. and Wu, J., The homotopy types of moment-angle complexes for flag complexes , Trans. Amer. Math. Soc. 368 (2016), 66636682.
[GT07] Grbić, J. and Theriault, S., The homotopy type of the complement of a coordinate subspace arrangement , Topology 46 (2007), 357396.
[GT13] Grbić, J. and Theriault, S., The homotopy type of the polyhedral product for shifted complexes , Adv. Math. 245 (2013), 690715.
[GT16] Grbić, J. and Theriault, S., Homotopy theory in toric topology , Russian Math. Surveys 71 (2016), 185251.
[IK18] Iriye, K. and Kishimoto, D., Fat wedge filtration and decomposition of polyhedral products, Kyoto J. Math., doi:10.1215/21562261-2017-0038.
[Mat76] Mather, M., Pull-backs in homotopy theory , Canad. J. Math. 28 (1976), 225263.
[Mil59] Milnor, J., On spaces having the homotopy type of a CW-complex , Trans. Amer. Math. Soc. 90 (1959), 272280.
[PV16] Panov, T. and Veryovkin, Y., Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups , Mat. Sb. 207 (2016), 105126 (in Russian); Sb. Math. 207 (2016), 1582–1600 (Engl. transl.).
[Por66] Porter, G. J., The homotopy groups of wedges of suspensions , Amer. J. Math. 88 (1966), 655663.
[Sel97] Selick, P., Introduction to homotopy theory, Fields Institute Monographs, vol. 9 (American Mathematical Society, Providence, RI, 1997).
[Spa66] Spanier, E. H., Algebraic topology (McGraw-Hill, New York, Toronto, London, 1966).
[The18] Theriault, S., The dual polyhedral product, cocategory and nilpotence , Adv. Math. 340 (2018), 138192.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed