Hostname: page-component-68c7f8b79f-7mrzp Total loading time: 0 Render date: 2025-12-16T05:42:30.367Z Has data issue: false hasContentIssue false

Involutions, knots, and Floer K-theory

Published online by Cambridge University Press:  16 December 2025

Hokuto Konno
Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan konno@ms.u-tokyo.ac.jp
Jin Miyazawa
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan miyazawa.jin.5a@kyoto-u.ac.jp
Masaki Taniguchi
Affiliation:
Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan taniguchi.masaki.7m@kyoto-u.ac.jp

Abstract

We establish a version of Seiberg–Witten Floer K-theory for knots, as well as a version of Seiberg–Witten Floer K-theory for 3-manifolds with involution. The main theorems are 10/8-type inequalities for knots and for involutions. The 10/8-inequality for knots yields numerous applications to knots, such as lower bounds on stabilizing numbers and relative genera. We also give obstructions to extending involutions on 3-manifolds to 4-manifolds, and detect non-smoothable involutions on 4-manifolds with boundary.

MSC classification

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alfieri, A., Kang, S. and Stipsicz, A. I., Connected Floer homology of covering involutions , Math. Ann. 377 (2020), 14271452; MR 4126897.10.1007/s00208-020-01992-9CrossRefGoogle Scholar
Anvari, N. and Hambleton, I., Cyclic branched coverings of Brieskorn spheres bounding acyclic 4-manifolds , Glasgow Math. J. 63 (2021), 400413; MR 4244205.10.1017/S0017089520000269CrossRefGoogle Scholar
Atiyah, M. F. and Bott, R., A Lefschetz fixed point formula for elliptic complexes . II. Applications, Ann. of Math. (2) 88 (1968), 451491; MR 232406.10.2307/1970721CrossRefGoogle Scholar
Atiyah, M. F., Patodi, V. K. and Singer, I. M., Spectral asymmetry and Riemannian geometry. I , Math. Proc. Cambridge Philos. Soc. 77 (1975), 4369; MR 397797.10.1017/S0305004100049410CrossRefGoogle Scholar
Baader, S., Banfield, I. and Lewark, L., Untwisting 3-strand torus knots , Bull. London Math. Soc. 52 (2020), 429436; MR 4171377.10.1112/blms.12335CrossRefGoogle Scholar
Baldwin, J. A. and Sivek, S., Framed instanton homology and concordance , J. Topologie 14 (2021), 11131175; MR 4332488.10.1112/topo.12207CrossRefGoogle Scholar
Baraglia, D., Constraints on families of smooth 4-manifolds from Bauer–Furuta invariants, Preprint (2019), arXiv:1907.03949.Google Scholar
Baraglia, D. and Hekmati, P., Equivariant Seiberg–Witten–Floer cohomology , Algebr. Geom. Topol. 24 (2024), 493554.10.2140/agt.2024.24.493CrossRefGoogle Scholar
Boileau, M. and Otal, J.-P., Scindements de Heegaard et groupe des homéotopies des petites variétés de Seifert , Invent. Math. 106 (1991), 85107; MR 1123375.10.1007/BF01243906CrossRefGoogle Scholar
Boileau, M. and Porti, J., Geometrization of 3-orbifolds of cyclic type , Astérisque 272 (2001), 208, Appendix A by Michael Heusener and Porti; MR 1844891.Google Scholar
Boyer, S., Simply-connected 4-manifolds with a given boundary , Trans. Amer. Math. Soc. 298 (1986), 331357; MR 857447.CrossRefGoogle Scholar
Boyer, S., Realization of simply-connected 4-manifolds with a given boundary , Comment. Math. Helv. 68 (1993), 2047; MR 1201200.CrossRefGoogle Scholar
Bryan, J., Seiberg–Witten theory and $\mathbf{Z}/2^p$ actions on spin 4-manifolds, Math. Res. Lett. 5 (1998), 165183; MR 1617929.CrossRefGoogle Scholar
Collin, O. and Steer, B., Instanton Floer homology for knots via 3-orbifolds , J. Differential Geom. 51 (1999), 149202; MR 1703606.CrossRefGoogle Scholar
Conway, A. and Nagel, M., Stably slice disks of links , J. Topologie 13 (2020), 12611301; MR 4125756.10.1112/topo.12154CrossRefGoogle Scholar
Crabb, M. C., Periodicity in $\mathbf{Z}/4$ -equivariant stable homotopy theory, in Algebraic topology (Evanston, IL, 1988), Contemporary Mathematics, vol. 96 (American Mathematical Society, Providence, RI, 1989), 109–124; MR 1022677.Google Scholar
Daemi, A. and Scaduto, C., Chern–Simons functional, singular instantons, and the four-dimensional clasp number , J. Eur. Math. Soc. 26 (2023), 21272190.10.4171/jems/1320CrossRefGoogle Scholar
Daemi, A. and Scaduto, C., Equivariant aspects of singular instanton floer homology , Geom. Topol. 28 (2024), 40574190.10.2140/gt.2024.28.4057CrossRefGoogle Scholar
Dai, I., Hedden, M. and Mallick, A., Corks, involutions, and Heegaard Floer homology , J. Eur. Math. Soc. 25 (2022), 23192389.10.4171/jems/1239CrossRefGoogle Scholar
Freedman, M. and Kirby, R., A geometric proof of Rochlin’s theorem , in Algebraic and geometric topology (Stanford University, Stanford, CA, 1976), Part 2, Proceedings of Symposia in Pure Mathematics, vol. XXXII (American Mathematical Society, Providence, RI, 1978), 8597; MR 520525.Google Scholar
Furuta, M., Monopole equation and the $\frac{11}{8}$ -conjecture , Math. Res. Lett. 8 (2001), 279291; MR 1839478.10.4310/MRL.2001.v8.n3.a5CrossRefGoogle Scholar
Gilmer, P. M., Configurations of surfaces in 4-manifolds , Trans. Amer. Math. Soc. 264 (1981), 353380; MR 603768.Google Scholar
Gordon, C. M. A. and Litherland, R. A., On the signature of a link , Invent. Math. 47 (1978), 5369; MR 500905.10.1007/BF01609479CrossRefGoogle Scholar
Greenlees, J. P. C. and May, J. P., Equivariant stable homotopy theory , in Handbook of algebraic topology (North-Holland, Amsterdam, 1995), 277323; MR 1361893.CrossRefGoogle Scholar
Hamilton, M. J. D., Homology classes of negative square and embedded surfaces in 4-manifolds , Bull. London Math. Soc. 45 (2013), 12211226; MR 3138489.10.1112/blms/bdt050CrossRefGoogle Scholar
Hedden, M. and Raoux, K., Knot Floer homology and relative adjunction inequalities , Selecta Math. 29 (2023), 7.10.1007/s00029-022-00810-1CrossRefGoogle Scholar
Hendricks, K., A rank inequality for the knot Floer homology of double branched covers , Algebra Geom. Topol. 12 (2012), 21272178; MR 3020203.10.2140/agt.2012.12.2127CrossRefGoogle Scholar
Hendricks, K., Lidman, T. and Lipshitz, R., Rank inequalities for the Heegaard Floer homology of branched covers , Doc. Math. 27 (2022), 581612.10.4171/dm/878CrossRefGoogle Scholar
Hendricks, K. and Lipshitz, R., Involutive bordered Floer homology , Trans. Amer. Math. Soc. 372 (2019), 389424; MR 3968773.CrossRefGoogle Scholar
Hendricks, K., Lipshitz, R. and Sarkar, S., A flexible construction of equivariant Floer homology and applications , J. Topologie 9 (2016), 11531236; MR 3620455.10.1112/jtopol/jtw022CrossRefGoogle Scholar
Hendricks, K., Lipshitz, R. and Sarkar, S., Corrigendum: A flexible construction of equivariant Floer homology and applications , J. Topologie 13 (2020), 13171331; MR 4125758.10.1112/topo.12124CrossRefGoogle Scholar
Hendricks, K., Lipshitz, R. and Sarkar, S., A simplicial construction of G-equivariant Floer homology , Proc. London Math. Soc. (3) 121 (2020), 17981866; MR 4201124.10.1112/plms.12385CrossRefGoogle Scholar
Hendricks, K. and Manolescu, C., Involutive Heegaard Floer homology , Duke Math. J. 166 (2017), 12111299; MR 3649355.10.1215/00127094-3793141CrossRefGoogle Scholar
Hirzebruch, F., The signature of ramified coverings , in Global Analysis (Papers in Honor of K. Kodaira) (University of Tokyo Press, Tokyo, 1969), 253265; MR 0258060.Google Scholar
Hsiang, W. C. and Szczarba, R. H., On embedding surfaces in four-manifolds, in Algebraic topology (University of Wisconsin, Madison, WI, 1970), Proceedings of Symposia in Pure Mathematics, Vol. XXII (American Mathematical Society, 1971), 97103; MR 0339239.10.1090/pspum/022/0339239CrossRefGoogle Scholar
Iida, N., Mukherjee, A. and Taniguchi, M., An adjunction inequality for the Bauer–Furuta type invariants, with applications to sliceness and 4-manifold topology, Preprint (2021), arXiv:2102.02076.Google Scholar
Kang, S., $\mathbb{Z}_{2}$ -equivariant Heegaard Floer cohomology of knots in $S^{3}$ as a strong Heegaard invariant, Preprint (2018), arXiv:1810.01919.Google Scholar
Kang, S., A transverse knot invariant from $\mathbb{Z}_{2}$ -equivariant Heegaard Floer cohomology, Preprint (2018), arXiv:1802.00351.Google Scholar
Karakurt, Ç. and Lidman, T., Rank inequalities for the Heegaard Floer homology of Seifert homology spheres , Trans. Amer. Math. Soc. 367 (2015), 72917322; MR 3378830.CrossRefGoogle Scholar
Kato, Y., Nonsmoothable actions of $\mathbb{Z}_2\times \mathbb{Z}_2$ on spin four-manifolds , Topology Appl. 307 (2022), 107868.10.1016/j.topol.2021.107868CrossRefGoogle Scholar
Kauffman, L. H., On knots , Annals of Mathematics Studies, vol. 115 (Princeton University Press, Princeton, NJ, 1987); MR 907872.Google Scholar
Khandhawit, T., A new gauge slice for the relative Bauer–Furuta invariants , Geom. Topologie 19 (2015), 16311655; MR 3352245.10.2140/gt.2015.19.1631CrossRefGoogle Scholar
Khandhawit, T., Lin, J. and Sasahira, H., Unfolded Seiberg–Witten Floer spectra, II: Relative invariants and the gluing theorem , J. Differential Geom. 124 (2023), 231316.10.4310/jdg/1686931602CrossRefGoogle Scholar
Klug, M. and Ruppik, B., Deep and shallow slice knots in 4-manifolds , Proc. Amer. Math. Soc. Ser. B 8 (2021), 204218.10.1090/bproc/89CrossRefGoogle Scholar
Konno, H. and Taniguchi, M., The groups of diffeomorphisms and homeomorphisms of 4-manifolds with boundary , Adv. Math. 409 (2022), 108627.10.1016/j.aim.2022.108627CrossRefGoogle Scholar
Kotschick, D. and Matić, G., Embedded surfaces in four-manifolds, branched covers, and ${\rm SO}(3)$ -invariants , Math. Proc. Cambridge Philos. Soc. 117 (1995), 275286; MR 1307081.10.1017/S0305004100073114CrossRefGoogle Scholar
Kronheimer, P. B., An obstruction to removing intersection points in immersed surfaces , Topology 36 (1997), 931962; https://mathscinet.ams.org/mathscinet/relay-station?mr=1432428MR 1432428.10.1016/S0040-9383(96)00020-1CrossRefGoogle Scholar
Kronheimer, P. B. and Mrowka, T. S., Gauge theory for embedded surfaces . I, Topology 32 (1993), 773826; MR 1241873.10.1016/0040-9383(93)90051-VCrossRefGoogle Scholar
Kronheimer, P. and Mrowka, T., Monopoles and three-manifolds , New Mathematical Monographs, vol. 10 (Cambridge University Press, Cambridge, 2007); MR 2388043.Google Scholar
Kronheimer, P. B. and Mrowka, T. S., Knot homology groups from instantons , J. Topologie 4 (2011), 835918; MR 2860345.10.1112/jtopol/jtr024CrossRefGoogle Scholar
Kronheimer, P. B. and Mrowka, T. S., Gauge theory and Rasmussen’s invariant , J. Topologie 6 (2013), 659674; MR 3100886.CrossRefGoogle Scholar
Large, T., Equivariant Floer theory and double covers of three-manifolds, Preprint (2019), arXiv:1910.12119.Google Scholar
Lidman, T. and Manolescu, C., Floer homology and covering spaces, Geom. Topol. 22 (2018), 28172838; MR 3811772.Google Scholar
Lin, F. and Lipnowski, M., The Seiberg–Witten equations and the length spectrum of hyperbolic three-manifolds , J. Amer. Math. Soc. 35 (2021), 233293; MR 4322393.10.1090/jams/982CrossRefGoogle Scholar
Lin, F. and Lipnowski, M., Closed geodesics and Frøyshov invariants of hyperbolic three-manifolds , J. Eur. Math. Soc. 27 (2025), 42014281.10.4171/jems/1452CrossRefGoogle Scholar
Lin, J., Ruberman, D. and Saveliev, N., On the Frøyshov invariant and monopole Lefschetz number, Preprint (2018), arXiv:1802.07704.Google Scholar
Lin, J., Ruberman, D. and Saveliev, N., On the monopole Lefschetz number of finite order diffeomorphisms , Geom. Topol. 25 (2022), 35913628.10.2140/gt.2021.25.3591CrossRefGoogle Scholar
Lisca, P. and Owens, B., Signatures, Heegaard Floer correction terms and quasi-alternating links, Proc. Amer. Math. Soc. 143 (2015), 907914; MR 3283677.10.1090/S0002-9939-2014-12265-9CrossRefGoogle Scholar
Manolescu, C., Seiberg–Witten–Floer stable homotopy type of three-manifolds with $b_1=0$ , Geom. Topol. 7 (2003), 889932; MR 2026550.10.2140/gt.2003.7.889CrossRefGoogle Scholar
Manolescu, C., On the intersection forms of spin four-manifolds with boundary , Math. Ann. 359 (2014), 695728; MR 3231012.10.1007/s00208-014-1010-1CrossRefGoogle Scholar
Manolescu, C., Pin(2)-equivariant Seiberg–Witten Floer homology and the triangulation conjecture , J. Amer. Math. Soc. 29 (2016), 147176; MR 3402697.10.1090/jams829CrossRefGoogle Scholar
Manolescu, C., Marengon, M. and Piccirillo, L., Relative genus bounds in indefinite four-manifolds, Preprint (2020), arXiv:2012.12270.Google Scholar
Manolescu, C., Marengon, M., Sarkar, S. and Willis, M., A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds , Duke Math. J. 172 (2023) 231311.10.1215/00127094-2022-0039CrossRefGoogle Scholar
Manolescu, C. and Owens, B., A concordance invariant from the Floer homology of double branched covers , Int. Math. Res. Notices 20 (2007), rnm077; MR 2363303.Google Scholar
Manolescu, C. and Sarkar, S., A knot Floer stable homotopy type, Preprint (2021), arXiv:2108.13566.Google Scholar
Matsumoto, Y., On the bounding genus of homology 3-spheres, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 287318; MR 672065.Google Scholar
May, J. P., Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91 (American Mathematical Society, Providence, RI, 1996), with contributions by Cole, M., Comezaña, G., Costenoble, S., Elmendorf, A. D., Greenlees, J. P. C., Lewis, L. G., Jr., Piacenza, R. J., Triantafillou, G. and Waner, S.; MR 1413302.10.1090/cbms/091CrossRefGoogle Scholar
McCullough, D. and Soma, T., The Smale conjecture for Seifert fibered spaces with hyperbolic base orbifold , J. Differential Geom. 93 (2013), 327353; MR 3024309.10.4310/jdg/1361800869CrossRefGoogle Scholar
Mednykh, A. and Vesnin, A., Visualization of the isometry group action on the Fomenko–Matveev–Weeks manifold , J. Lie Theory 8 (1998), 5166; MR 1616790.Google Scholar
Mrowka, T., Ozsváth, P. and Yu, B., Seiberg–Witten monopoles on Seifert fibered spaces , Comm. Anal. Geom. 5 (1997), 685791; MR 1611061.CrossRefGoogle Scholar
Mrowka, T. and Rollin, Y., Legendrian knots and monopoles, Algebra Geom. Topol. 6 (2006), 169; MR 2199446.Google Scholar
Nagami, S., Existence of Spin structures on double branched covering spaces over four-manifolds, Osaka J. Math. 37 (2000), 425440; MR 1772842.Google Scholar
Nakamura, N., $\rm{Pin}^-(2)$ -monopole equations and intersection forms with local coefficients of four-manifolds, Math. Ann. 357 (2013), 915939; MR 3118618.10.1007/s00208-013-0924-3CrossRefGoogle Scholar
Nicolaescu, L. I., Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual dimensions of finite energy Seiberg–Witten moduli spaces, Israel J. Math. 114 (1999), 61123; MR 1738674.Google Scholar
Ozsváth, P. and Szabó, Z., Knot Floer homology and the four-ball genus , Geom. Topologie 7 (2003), 615639; MR 2026543.10.2140/gt.2003.7.615CrossRefGoogle Scholar
Robertello, R. A., An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543555; MR 182965.Google Scholar
Ruberman, D. and Saveliev, N., The $\overline\mu$ -invariant of Seifert fibered homology spheres and the Dirac operator, Geom. Dedicata 154 (2011), 93101; MR 2832713.10.1007/s10711-010-9569-5CrossRefGoogle Scholar
Schneiderman, R., Stable concordance of knots in 3-manifolds, Algebra Geom. Topol. 10 (2010), 373432; MR 2602841.Google Scholar
Shibuya, T., Some relations among various numerical invariants for links , Osaka Math. J. 11 (1974), 313322; MR 353295.Google Scholar
Stolz, S., The level of real projective spaces , Comment. Math. Helv. 64 (1989), 661674; MR 1023002.10.1007/BF02564700CrossRefGoogle Scholar
Stoffregen, M., Pin(2)-equivariant Seiberg–Witten Floer homology of Seifert fibrations , Compositio Math. 156 (2020), 199250; MR 4044465.CrossRefGoogle Scholar