Skip to main content Accessibility help
×
Home

Koszul, Ringel and Serre duality for strict polynomial functors

  • Henning Krause (a1)

Abstract

This is a report on recent work of Chałupnik and Touzé. We explain the Koszul duality for the category of strict polynomial functors and make explicit the underlying monoidal structure which seems to be of independent interest. Then we connect this to Ringel duality for Schur algebras and describe Serre duality for strict polynomial functors.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Koszul, Ringel and Serre duality for strict polynomial functors
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Koszul, Ringel and Serre duality for strict polynomial functors
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Koszul, Ringel and Serre duality for strict polynomial functors
      Available formats
      ×

Copyright

References

Hide All
[Aki89]Akin, K., Extensions of symmetric tensors by alternating tensors, J. Algebra 121 (1989), 358363.
[AB88]Akin, K. and Buchsbaum, D. A., Characteristic-free representation theory of the general linear group. II. Homological considerations, Adv. Math. 72 (1988), 171210.
[ABW82]Akin, K., Buchsbaum, D. A. and Weyman, J., Schur functors and Schur complexes, Adv. Math. 44 (1982), 207278.
[Aus71]Auslander, M., Representation dimension of Artin algebras, Queen Mary College Mathematics Notes (London, 1971).
[Bou70]Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 1 à 3 (Hermann, Paris, 1970).
[Bou81]Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 4 à 7, Lecture Notes in Mathematics, vol. 864 (Masson, Paris, 1981).
[Bou67]Bousfield, A. K., Homogeneous functors and their derived functors, Preprint (1967), Brandeis University.
[Car54/55]Cartan, H., Algèbres d’Eilenberg-MacLane et homotopie, Séminaire Henri Cartan, vol. 7 (Secrétariat mathématique, Paris, 1954/55).
[Cha08]Chałupnik, M., Koszul duality and extensions of exponential functors, Adv. Math. 218 (2008), 969982.
[CPS90]Cline, E., Parshall, B. and Scott, L., Integral and graded quasi-hereditary algebras. I, J. Algebra 131 (1990), 126160.
[Day70]Day, B., Construction of biclosed categories, PhD thesis, University of New South Wales (1970).
[Don86]Donkin, S., On Schur algebras and related algebras. I, J. Algebra 104 (1986), 310328.
[Don93]Donkin, S., On tilting modules for algebraic groups, Math. Z. 212 (1993), 3960.
[EM54]Eilenberg, S. and MacLane, S., On the groups $H(\Pi , n). $ II. Methods of computation, Ann. of Math. (2) 60 (1954), 49139.
[Erd93]Erdmann, K., Schur algebras of finite type, Q. J. Math. 44 (1993), 1741.
[FS97]Friedlander, E. M. and Suslin, A., Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), 209270.
[Gre80]Green, J. A., Polynomial representations of GLn, Lecture Notes in Mathematics, vol. 830 (Springer, Berlin, 1980).
[IK86]Im, G. B. and Kelly, G. M., A universal property of the convolution monoidal structure, J. Pure Appl. Algebra 43 (1986), 7588.
[Kel94]Keller, B., Deriving DG categories, Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63102.
[Kuh94]Kuhn, N. J., Generic representations of the finite general linear groups and the Steenrod algebra. I, Amer. J. Math. 116 (1994), 327360.
[Kuh98]Kuhn, N. J., Rational cohomology and cohomological stability in generic representation theory, Amer. J. Math. 120 (1998), 13171341.
[LMS86]Lewis, L. G. Jr., May, J. P. and Steinberger, M., Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213 (Springer, Berlin, 1986).
[Mac95]Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, second edition (Oxford University Press, New York, 1995).
[Mac95]Mac Lane, S., Homology, Classics in Mathematics, reprint of the 1975 edition (Springer, Berlin, 1995).
[Pir03]Pirashvili, T., Introduction to functor homology, in Rational representations, the Steenrod algebra and functor homology, Panoramas et Synthèses, vol. 16 (Société Mathématique de France, Paris, 2003), 126.
[Qui73]Quillen, D., Higher algebraic K-theory. I, in Algebraic K-theory, I: higher K-theories, Seattle, WA, 1972, Lecture Notes in Mathematics, vol. 341 (Springer, Berlin, 1973), 85147.
[RVdB02]Reiten, I. and Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), 295366.
[Rin91]Ringel, C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), 209223.
[Rob63]Roby, N., Lois polynomes et lois formelles en théorie des modules, Ann. Sci. Éc. Norm. Supér. (3) 80 (1963), 213348.
[Sch01]Schur, I., Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Dissertation, Universität Berlin (1901) (in I. Schur, Gesammelte Abhandlungen I (Springer, Berlin, 1973), 1–70).
[Spa88]Spaltenstein, N., Resolutions of unbounded complexes, Compositio Math. 65 (1988), 121154.
[Tot97]Totaro, B., Projective resolutions of representations of GL(n), J. Reine Angew. Math. 482 (1997), 113.
[Tou10]Touzé, A., Bar complexes and extensions of classical exponential functors, Preprint (2010), math.RT/1012.2724v2.
[Tou11]Touzé, A., Koszul duality and derivatives of non-additive functors, J. Pure Appl. Algebra, to appear, math.RT/1103.4580v1.
[Ver96]Verdier, J.-L., Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Koszul, Ringel and Serre duality for strict polynomial functors

  • Henning Krause (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.