Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-x5mqb Total loading time: 0.278 Render date: 2021-12-07T09:55:58.496Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Koszul, Ringel and Serre duality for strict polynomial functors

Published online by Cambridge University Press:  18 March 2013

Henning Krause*
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany email hkrause@math.uni-bielefeld.de
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This is a report on recent work of Chałupnik and Touzé. We explain the Koszul duality for the category of strict polynomial functors and make explicit the underlying monoidal structure which seems to be of independent interest. Then we connect this to Ringel duality for Schur algebras and describe Serre duality for strict polynomial functors.

Type
Research Article
Copyright
© The Author(s) 2013 

References

Akin, K., Extensions of symmetric tensors by alternating tensors, J. Algebra 121 (1989), 358363.CrossRefGoogle Scholar
Akin, K. and Buchsbaum, D. A., Characteristic-free representation theory of the general linear group. II. Homological considerations, Adv. Math. 72 (1988), 171210.CrossRefGoogle Scholar
Akin, K., Buchsbaum, D. A. and Weyman, J., Schur functors and Schur complexes, Adv. Math. 44 (1982), 207278.CrossRefGoogle Scholar
Auslander, M., Representation dimension of Artin algebras, Queen Mary College Mathematics Notes (London, 1971).Google Scholar
Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 1 à 3 (Hermann, Paris, 1970).Google Scholar
Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 4 à 7, Lecture Notes in Mathematics, vol. 864 (Masson, Paris, 1981).Google Scholar
Bousfield, A. K., Homogeneous functors and their derived functors, Preprint (1967), Brandeis University.Google Scholar
Cartan, H., Algèbres d’Eilenberg-MacLane et homotopie, Séminaire Henri Cartan, vol. 7 (Secrétariat mathématique, Paris, 1954/55).Google Scholar
Chałupnik, M., Koszul duality and extensions of exponential functors, Adv. Math. 218 (2008), 969982.CrossRefGoogle Scholar
Cline, E., Parshall, B. and Scott, L., Integral and graded quasi-hereditary algebras. I, J. Algebra 131 (1990), 126160.CrossRefGoogle Scholar
Day, B., Construction of biclosed categories, PhD thesis, University of New South Wales (1970).Google Scholar
Donkin, S., On Schur algebras and related algebras. I, J. Algebra 104 (1986), 310328.CrossRefGoogle Scholar
Donkin, S., On tilting modules for algebraic groups, Math. Z. 212 (1993), 3960.CrossRefGoogle Scholar
Eilenberg, S. and MacLane, S., On the groups $H(\Pi , n). $ II. Methods of computation, Ann. of Math. (2) 60 (1954), 49139.CrossRefGoogle Scholar
Erdmann, K., Schur algebras of finite type, Q. J. Math. 44 (1993), 1741.CrossRefGoogle Scholar
Friedlander, E. M. and Suslin, A., Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), 209270.CrossRefGoogle Scholar
Green, J. A., Polynomial representations of GLn, Lecture Notes in Mathematics, vol. 830 (Springer, Berlin, 1980).CrossRefGoogle Scholar
Im, G. B. and Kelly, G. M., A universal property of the convolution monoidal structure, J. Pure Appl. Algebra 43 (1986), 7588.CrossRefGoogle Scholar
Keller, B., Deriving DG categories, Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63102.CrossRefGoogle Scholar
Kuhn, N. J., Generic representations of the finite general linear groups and the Steenrod algebra. I, Amer. J. Math. 116 (1994), 327360.CrossRefGoogle Scholar
Kuhn, N. J., Rational cohomology and cohomological stability in generic representation theory, Amer. J. Math. 120 (1998), 13171341.CrossRefGoogle Scholar
Lewis, L. G. Jr., May, J. P. and Steinberger, M., Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213 (Springer, Berlin, 1986).CrossRefGoogle Scholar
Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, second edition (Oxford University Press, New York, 1995).Google Scholar
Mac Lane, S., Homology, Classics in Mathematics, reprint of the 1975 edition (Springer, Berlin, 1995).Google Scholar
Pirashvili, T., Introduction to functor homology, in Rational representations, the Steenrod algebra and functor homology, Panoramas et Synthèses, vol. 16 (Société Mathématique de France, Paris, 2003), 126.Google Scholar
Quillen, D., Higher algebraic K-theory. I, in Algebraic K-theory, I: higher K-theories, Seattle, WA, 1972, Lecture Notes in Mathematics, vol. 341 (Springer, Berlin, 1973), 85147.Google Scholar
Reiten, I. and Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), 295366.CrossRefGoogle Scholar
Ringel, C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), 209223.CrossRefGoogle Scholar
Roby, N., Lois polynomes et lois formelles en théorie des modules, Ann. Sci. Éc. Norm. Supér. (3) 80 (1963), 213348.CrossRefGoogle Scholar
Schur, I., Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Dissertation, Universität Berlin (1901) (in I. Schur, Gesammelte Abhandlungen I (Springer, Berlin, 1973), 1–70).Google Scholar
Spaltenstein, N., Resolutions of unbounded complexes, Compositio Math. 65 (1988), 121154.Google Scholar
Totaro, B., Projective resolutions of representations of GL(n), J. Reine Angew. Math. 482 (1997), 113.Google Scholar
Touzé, A., Bar complexes and extensions of classical exponential functors, Preprint (2010), math.RT/1012.2724v2.Google Scholar
Touzé, A., Koszul duality and derivatives of non-additive functors, J. Pure Appl. Algebra, to appear, math.RT/1103.4580v1.Google Scholar
Verdier, J.-L., Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996).Google Scholar
You have Access
21
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Koszul, Ringel and Serre duality for strict polynomial functors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Koszul, Ringel and Serre duality for strict polynomial functors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Koszul, Ringel and Serre duality for strict polynomial functors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *