Skip to main content Accessibility help
×
Home

Loose Engel structures

  • Roger Casals (a1), Álvaro del Pino (a2) and Francisco Presas (a3)

Abstract

This paper contributes to the study of Engel structures and their classification. The main result introduces the notion of a loose family of Engel structures and shows that two such families are Engel homotopic if and only if they are formally homotopic. This implies a complete $h$ -principle when auxiliary data is fixed. As a corollary, we show that Lorentz and orientable Cartan prolongations are classified up to homotopy by their formal data.

Copyright

References

Hide All
[BEM15]Borman, M. S., Eliashberg, Y. and Murphy, E., Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015), 281361.
[BH93]Bryant, R. L. and Hsu, L., Rigidity of integral curves of rank 2 distributions, Invent. Math. 114 (1993), 435461.
[Car01]Cartan, E., Sur quelques quadratures dont l’élément différentiel contient des fonctions arbitraires, Bull. Soc. Math. France 29 (1901), 118130.
[Car24]Cartan, É., Sur les variétés à connexion projective, Bull. Soc. Math. France 52 (1924), 205241.
[CMP19]Casals, R., Murphy, E. and Presas, F., Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019), 563604.
[CdP18]Casals, R. and del Pino, Á., Classification of Engel knots, Math. Ann. 371 (2018), 391404.
[CPdPP17]Casals, R., Pérez, J., del Pino, Á. and Presas, F., Existence h-principle for Engel structures, Invent. Math. 210 (2017), 417451.
[CPV18]Colin, V., Presas, F. and Vogel, T., Notes on open book decompositions for Engel structures, Algebr. Geom. Topol. 18 (2018), 42754303.
[dP18]del Pino, Á., On the classification of prolongations up to Engel homotopy, Proc. Amer. Math. Soc. 146 (2018), 891907.
[dPV18]del Pino, Á. and Vogel, T., The Engel-Lutz twist and overtwisted Engel structures, Preprint (2018), arXiv:1712.09286.
[Eli89]Eliashberg, Y., Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989), 623637.
[Eli92]Eliashberg, Y., Contact 3-manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier 42 (1992), 165192.
[EM02]Eliashberg, Y. and Mishachev, N., Introduction to the h-principle, Graduate Studies in Mathematics, vol. 48 (American Mathematical Society, Providence, RI, 2002).
[Gei08]Geiges, H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109 (Cambridge University Press, Cambridge, 2008).
[GV87]Gershkovich, V. Ya. and Vershik, A. M., Nonholonomic dynamical systems. Geometry of distributions and variational problems, in Dynamical systems – 7, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., vol. 16 (VINITI, Moscow, 1987), 585.
[Gro86]Gromov, M., Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 9 (Springer, Berlin, 1986).
[KV18]Kotschick, D. and Vogel, T., Engel structures and weakly hyperbolic flows on four-manifolds, Comment. Math. Helv. 93 (2018), 475491.
[Lit70]Little, J. A., Nondegenerate homotopies of curves on the unit 2-sphere, J. Diff. Geom. 4 (1970), 339348.
[Mit18]Mitsumatsu, Y., Geometry and dynamics of Engel structures, Preprint (2018),arXiv:1804.09471.
[MM03]Moerdijk, I. and Mrčun, J., Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91 (Cambridge University Press, Cambridge, 2003).
[Mon93]Montgomery, R., Generic distributions and Lie algebras of vector fields, J. Differential Equations 103 (1993), 387393.
[Mon99]Montgomery, R., Engel deformations and contact structures, in Northern California symplectic geometry seminar, Advances in the Mathematical Sciences, vol. 45 (American Mathematical Society, Providence, RI, 1999), 103117; American Mathematical Society Transl. Ser. 2, 196.
[Mon02]Montgomery, R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91 (American Mathematical Society, Providence, RI, 2002).
[MZ09]Montgomery, R. and Zhitomirskii, M., Points and curves in the Monster tower, Memoirs of the American Mathematical Society, vol. 956 (American Mathematical Society, Providence, RI, 2009).
[PdPP16]Peralta-Salas, D., del Pino, Á. and Presas, F., Foliated vector fields without periodic orbits, Israel J. Math. 214 (2016), 443462.
[Pia19]Pia, N., Riemannian properties of Engel structures, Preprint (2019), arXiv:1905.09006.
[Sal15]Saldanha, N., The homotopy type of spaces of locally convex curves in the sphere, Geom. Topol. 19 (2015), 11551203.
[Thu74]Thurston, W., The theory of foliations of codimension greater than one, Comm. Math. Helv. (1974), 214231.
[Thu76]Thurston, W., Existence of codimension-one foliations, Ann. of Math. (2) 104 (1976), 249268.
[Vog09]Vogel, T., Existence of Engel structures, Ann. of Math. (2) 169 (2009), 79137.
[Vog18]Vogel, T., Non-loose unknots, overtwisted discs and the contact mapping class group of 𝕊3, Geom. Funct. Anal. 28 (2018), 228288.
[Yam18]Yamazaki, K., Engel manifolds and contact 3-orbifolds, Preprint (2018), arXiv:1811.09076.
[Zha18a]Zhao, Z., Lagrangian Engel structures, Preprint (2018), arXiv:1805.09147.
[Zha18b]Zhao, Z., Complex and Lagrangian Engel structures. PhD thesis, Duke University (2018).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Loose Engel structures

  • Roger Casals (a1), Álvaro del Pino (a2) and Francisco Presas (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed