Skip to main content Accessibility help

Loose Engel structures

  • Roger Casals (a1), Álvaro del Pino (a2) and Francisco Presas (a3)


This paper contributes to the study of Engel structures and their classification. The main result introduces the notion of a loose family of Engel structures and shows that two such families are Engel homotopic if and only if they are formally homotopic. This implies a complete $h$ -principle when auxiliary data is fixed. As a corollary, we show that Lorentz and orientable Cartan prolongations are classified up to homotopy by their formal data.



Hide All
[BEM15]Borman, M. S., Eliashberg, Y. and Murphy, E., Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015), 281361.
[BH93]Bryant, R. L. and Hsu, L., Rigidity of integral curves of rank 2 distributions, Invent. Math. 114 (1993), 435461.
[Car01]Cartan, E., Sur quelques quadratures dont l’élément différentiel contient des fonctions arbitraires, Bull. Soc. Math. France 29 (1901), 118130.
[Car24]Cartan, É., Sur les variétés à connexion projective, Bull. Soc. Math. France 52 (1924), 205241.
[CMP19]Casals, R., Murphy, E. and Presas, F., Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019), 563604.
[CdP18]Casals, R. and del Pino, Á., Classification of Engel knots, Math. Ann. 371 (2018), 391404.
[CPdPP17]Casals, R., Pérez, J., del Pino, Á. and Presas, F., Existence h-principle for Engel structures, Invent. Math. 210 (2017), 417451.
[CPV18]Colin, V., Presas, F. and Vogel, T., Notes on open book decompositions for Engel structures, Algebr. Geom. Topol. 18 (2018), 42754303.
[dP18]del Pino, Á., On the classification of prolongations up to Engel homotopy, Proc. Amer. Math. Soc. 146 (2018), 891907.
[dPV18]del Pino, Á. and Vogel, T., The Engel-Lutz twist and overtwisted Engel structures, Preprint (2018), arXiv:1712.09286.
[Eli89]Eliashberg, Y., Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989), 623637.
[Eli92]Eliashberg, Y., Contact 3-manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier 42 (1992), 165192.
[EM02]Eliashberg, Y. and Mishachev, N., Introduction to the h-principle, Graduate Studies in Mathematics, vol. 48 (American Mathematical Society, Providence, RI, 2002).
[Gei08]Geiges, H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109 (Cambridge University Press, Cambridge, 2008).
[GV87]Gershkovich, V. Ya. and Vershik, A. M., Nonholonomic dynamical systems. Geometry of distributions and variational problems, in Dynamical systems – 7, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., vol. 16 (VINITI, Moscow, 1987), 585.
[Gro86]Gromov, M., Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 9 (Springer, Berlin, 1986).
[KV18]Kotschick, D. and Vogel, T., Engel structures and weakly hyperbolic flows on four-manifolds, Comment. Math. Helv. 93 (2018), 475491.
[Lit70]Little, J. A., Nondegenerate homotopies of curves on the unit 2-sphere, J. Diff. Geom. 4 (1970), 339348.
[Mit18]Mitsumatsu, Y., Geometry and dynamics of Engel structures, Preprint (2018),arXiv:1804.09471.
[MM03]Moerdijk, I. and Mrčun, J., Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91 (Cambridge University Press, Cambridge, 2003).
[Mon93]Montgomery, R., Generic distributions and Lie algebras of vector fields, J. Differential Equations 103 (1993), 387393.
[Mon99]Montgomery, R., Engel deformations and contact structures, in Northern California symplectic geometry seminar, Advances in the Mathematical Sciences, vol. 45 (American Mathematical Society, Providence, RI, 1999), 103117; American Mathematical Society Transl. Ser. 2, 196.
[Mon02]Montgomery, R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol. 91 (American Mathematical Society, Providence, RI, 2002).
[MZ09]Montgomery, R. and Zhitomirskii, M., Points and curves in the Monster tower, Memoirs of the American Mathematical Society, vol. 956 (American Mathematical Society, Providence, RI, 2009).
[PdPP16]Peralta-Salas, D., del Pino, Á. and Presas, F., Foliated vector fields without periodic orbits, Israel J. Math. 214 (2016), 443462.
[Pia19]Pia, N., Riemannian properties of Engel structures, Preprint (2019), arXiv:1905.09006.
[Sal15]Saldanha, N., The homotopy type of spaces of locally convex curves in the sphere, Geom. Topol. 19 (2015), 11551203.
[Thu74]Thurston, W., The theory of foliations of codimension greater than one, Comm. Math. Helv. (1974), 214231.
[Thu76]Thurston, W., Existence of codimension-one foliations, Ann. of Math. (2) 104 (1976), 249268.
[Vog09]Vogel, T., Existence of Engel structures, Ann. of Math. (2) 169 (2009), 79137.
[Vog18]Vogel, T., Non-loose unknots, overtwisted discs and the contact mapping class group of 𝕊3, Geom. Funct. Anal. 28 (2018), 228288.
[Yam18]Yamazaki, K., Engel manifolds and contact 3-orbifolds, Preprint (2018), arXiv:1811.09076.
[Zha18a]Zhao, Z., Lagrangian Engel structures, Preprint (2018), arXiv:1805.09147.
[Zha18b]Zhao, Z., Complex and Lagrangian Engel structures. PhD thesis, Duke University (2018).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Loose Engel structures

  • Roger Casals (a1), Álvaro del Pino (a2) and Francisco Presas (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed