Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T09:02:41.500Z Has data issue: false hasContentIssue false

Most odd-degree binary forms fail to primitively represent a square

Published online by Cambridge University Press:  08 February 2024

Ashvin A. Swaminathan*
Affiliation:
Department of Mathematics, Harvard University, Cambridge, MA 02138, USA ashvins@alumni.princeton.edu

Abstract

Let $F$ be a separable integral binary form of odd degree $N \geq 5$. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-$N$ superelliptic equation $y^2 = F(x,z)$ has finitely many primitive integer solutions. In this paper, we consider the family $\mathscr {F}_N(f_0)$ of degree-$N$ superelliptic equations with fixed leading coefficient $f_0 \in \mathbb {Z} \smallsetminus \pm \mathbb {Z}^2$, ordered by height. For every sufficiently large $N$, we prove that among equations in the family $\mathscr {F}_N(f_0)$, more than $74.9\,\%$ are insoluble, and more than $71.8\,\%$ are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least $99.9\,\%$ and $96.7\,\%$, respectively, when $f_0$ has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over $\mathbb {Q}$ have no rational points.

Type
Research Article
Copyright
© 2024 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afshar, A. and Porritt, S., The function field Sathe-Selberg formula in arithmetic progressions and ‘short intervals’, Acta Arith. 187 (2019), 101124; MR3897499.CrossRefGoogle Scholar
Ash, A., Brakenhoff, J. and Zarrabi, T., Equality of polynomial and field discriminants, Exp. Math. 16 (2007), 367374; MR2367325.CrossRefGoogle Scholar
Bhargava, M., Most hyperelliptic curves over $\mathbb {Q}$ have no rational points, Preprint (2013), arXiv:1308.0395.Google Scholar
Bhargava, M. and Gross, B. H., The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point, in Automorphic representations and L-functions, Studies in Mathematics, vol. 22 (Tata Institute of Fundamental Research, Mumbai, 2013), 2391; MR3156850.Google Scholar
Bhargava, M. and Poonen, B., The local-global principle for stacky curves, Preprint (2019), arXiv:2006.00167.Google Scholar
Bhargava, M. and Shankar, A., Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. of Math. (2) 181 (2015), 191242; MR3272925.CrossRefGoogle Scholar
Bhargava, M., Shankar, A. and Swaminathan, A., The second moment of the size of the $2$-Selmer group of elliptic curves, Preprint (2021), arXiv:2110.09063.Google Scholar
Birch, B. J. and Merriman, J. R., Finiteness theorems for binary forms with given discriminant, Proc. Lond. Math. Soc. (3) 24 (1972), 385394; MR0306119.CrossRefGoogle Scholar
Bourbaki, N., Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, in Actualités Scientifiques et Industrielles, No. 1364 (Hermann, Paris, 1975); MR0453824.Google Scholar
Bruin, N. R., Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract, vol. 133 (Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 2002), Dissertation, University of Leiden (1999); MR1916903.Google Scholar
Bruin, N. R. and Flynn, E. V., Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), 43294347; MR2156713.CrossRefGoogle Scholar
Bruin, N. R. and Stoll, M., Two-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), 23472370; MR2521292.CrossRefGoogle Scholar
Candelori, L. and Cameron, F., Vector bundles and modular forms for Fuchsian groups of genus zero, Preprint (2017), arXiv:1704.01684.Google Scholar
Cao, Y., Demarche, C. and Xu, F., Comparing descent obstruction and Brauer-Manin obstruction for open varieties, Trans. Amer. Math. Soc. 371 (2019), 86258650; MR3955558.CrossRefGoogle Scholar
Car, M., Factorisation dans $F_{q}{X}$, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 147150; MR651431.Google Scholar
Carlitz, L., The arithmetic of polynomials in a Galois field, Amer. J. Math. 54 (1932), 3950; MR1506871.CrossRefGoogle Scholar
Cassels, J. W. S., The Mordell-Weil group of curves of genus 2, in Arithmetic and geometry, volume I, Progress in Mathematics, Vol. 35 (Birkhäuser, Boston, MA, 1983), 2760; MR717589.Google Scholar
Cho, S., Group schemes and local densities of quadratic lattices in residue characteristic 2, Compos. Math. 151 (2015), 793827; MR3347991.CrossRefGoogle Scholar
Conway, J. H. and Sloane, N. J. A., Low-dimensional lattices. IV. The mass formula, Proc. Roy. Soc. Lond. Ser. A 419 (1988), 259286; MR965484.Google Scholar
Darmon, H., Faltings plus epsilon, Wiles plus epsilon, and the generalized Fermat equation, C. R. Math. Rep. Acad. Sci. Canada 19 (1997), 314; MR1479291.Google Scholar
Darmon, H. and Granville, A., On the equations $z^m=F(x,y)$ and $Ax^p+By^q=Cz^r$, Bull. Lond. Math. Soc. 27 (1995), 513543; MR1348707.CrossRefGoogle Scholar
Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349366; MR718935.CrossRefGoogle Scholar
Jones, B. W., A canonical quadratic form for the ring of 2-adic integers, Duke Math. J. 11 (1944), 715727; MR12640.CrossRefGoogle Scholar
Kitaoka, Y., Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106 (Cambridge University Press, Cambridge, 1993); MR1245266.CrossRefGoogle Scholar
Laga, J., The average size of the $2$-selmer group of a family of non-hyperelliptic curves of genus $3$, Preprint (2021), arXiv:2008.13158.Google Scholar
Langlands, R. P., The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, in Algebraic groups and discontinuous subgroups, Proceedings of Symposia in Pure Mathematics, vol. 9 (American Mathematical Society, Providence, RI, 1966), 143148; MR0213362.CrossRefGoogle Scholar
Lei, A. and Poulin, A., On certain probabilistic properties of polynomials over the ring of $p$-adic integers, Amer. Math. Monthly 127 (2020), 519529; MR4101402.CrossRefGoogle Scholar
Milnor, J. and Husemoller, D., Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73 (Springer, New York-Heidelberg, 1973); MR0506372.CrossRefGoogle Scholar
Nakagawa, J., Binary forms and orders of algebraic number fields, Invent. Math. 97 (1989), 219235; MR1001839.CrossRefGoogle Scholar
Poonen, B. and Stoll, M., Most odd degree hyperelliptic curves have only one rational point, Ann. of Math. (2) 180 (2014), 11371166; MR3245014.CrossRefGoogle Scholar
Reid, M., The complete intersection of two or more quadratics, PhD thesis, University of Cambridge (1972).Google Scholar
Reiner, I., On the two-adic density of representations by quadratic forms, Pacific J. Math. 6 (1956), 753762; MR83960.CrossRefGoogle Scholar
Romano, B. and Thorne, J. A., On the arithmetic of simple singularities of type $E$, Res. Number Theory 4 (2018), paper no. 21; MR3787911.CrossRefGoogle ScholarPubMed
Romano, B. and Thorne, J. A., $E_8$ and the average size of the 3-Selmer group of the Jacobian of a pointed genus-2 curve, Proc. Lond. Math. Soc. (3) 122 (2021), 678723; MR4258170.CrossRefGoogle Scholar
Serre, J.-P., A course in arithmetic, Graduate Texts in Mathematics, vol. 7 (Springer, New York-Heidelberg, 1973), translated from the French; MR0344216.CrossRefGoogle Scholar
Shankar, A., Siad, A., Swaminathan, A. and Varma, I., Geometry-of-numbers methods in the cusp and applications to class groups, Preprint (2021), arXiv:2110.09466.Google Scholar
Shankar, A. and Wang, X., Rational points on hyperelliptic curves having a marked non-Weierstrass point, Compos. Math. 154 (2018), 188222; MR3719247.CrossRefGoogle Scholar
Simon, D., A “class group” obstruction for the equation $Cy^d=F(x,z)$, J. Théor. Nombres Bordeaux 20 (2008), 811828; MR2523319.Google Scholar
Swaminathan, A., 2-Selmer groups, 2-class groups, and the arithmetic of binary forms, PhD thesis, Princeton University (ProQuest LLC, Ann Arbor, MI, 2022); MR4464170.Google Scholar
Swaminathan, A., A new parametrization for ideal classes in rings defined by binary forms, and applications, J. Reine Angew. Math. 798 (2023), 143191; MR4579703.Google Scholar
Thorne, J. A., $E_6$ and the arithmetic of a family of non-hyperelliptic curves of genus 3, Forum Math. Pi 3 (2015), e1; MR3298319.CrossRefGoogle Scholar
Wang, X., Maximal linear spaces contained in the based loci of pencils of quadrics, Algebr. Geom. 5 (2018), 359397; MR3800357.CrossRefGoogle Scholar
Wood, M. M., Rings and ideals parameterized by binary $n$-ic forms, J. Lond. Math. Soc. (2) 83 (2011), 208231; MR2763952.CrossRefGoogle Scholar
Wood, M. M., Parametrization of ideal classes in rings associated to binary forms, J. Reine Angew. Math. 689 (2014), 169199; MR3187931.CrossRefGoogle Scholar