Skip to main content

Nearby Lagrangian fibers and Whitney sphere links

  • Tobias Ekholm (a1) (a2) and Ivan Smith (a3)

Let $n>3$ , and let $L$ be a Lagrangian embedding of $\mathbb{R}^{n}$ into the cotangent bundle $T^{\ast }\mathbb{R}^{n}$ of $\mathbb{R}^{n}$ that agrees with the cotangent fiber $T_{x}^{\ast }\mathbb{R}^{n}$ over a point $x\neq 0$ outside a compact set. Assume that $L$ is disjoint from the cotangent fiber at the origin. The projection of $L$ to the base extends to a map of the $n$ -sphere $S^{n}$ into $\mathbb{R}^{n}\setminus \{0\}$ . We show that this map is homotopically trivial, answering a question of Eliashberg. We give a number of generalizations of this result, including homotopical constraints on embedded Lagrangian disks in the complement of another Lagrangian submanifold, and on two-component links of immersed Lagrangian spheres with one double point in $T^{\ast }\mathbb{R}^{n}$ , under suitable dimension and Maslov index hypotheses. The proofs combine techniques from Ekholm and Smith [Exact Lagrangian immersions with a single double point, J. Amer. Math. Soc. 29 (2016), 1–59] and Ekholm and Smith [Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014), 195–240] with symplectic field theory.

Hide All
[Abo12] Abouzaid, M., Nearby Lagrangians with vanishing Maslov class are homotopy equivalent , Invent. Math. 189 (2012), 251313.
[AK16a] Abouzaid, M. and Kragh, T., On the immersion classes of nearby Lagrangians , J. Topol. 9 (2016), 232244.
[AK16b] Abouzaid, M. and Kragh, T., Simple homotopy equivalence of nearby Lagrangians, Preprint (2016), arXiv:1603.05431.
[AS10] Abouzaid, M. and Seidel, P., An open string analogue of Viterbo functoriality , Geom. Topol. 14 (2010), 373440.
[AS12] Abouzaid, M. and Smith, I., Exact Lagrangians in plumbings , Geom. Funct. Anal. 22 (2012), 785831.
[AL94] Audin, M. and Lafontaine, J. (eds), Holomorphic curves in symplectic geometry, Progress in Mathematics, vol. 117 (Birkhäuser, Basel, 1994).
[BEE12] Bourgeois, F., Ekholm, T. and Eliashberg, Y., Effect of Legendrian surgery , Geom. Topol. 16 (2012), 301389.
[BEHWZ03] Bourgeois, F., Eliashberg, Y., Hofer, H., Wysocki, K. and Zehnder, E., Compactness results in symplectic field theory , Geom. Topol. 7 (2003), 799888.
[Cie02] Cieliebak, K., Handle attaching in symplectic homology and the chord conjecture , J. Eur. Math. Soc. (JEMS) 4 (2002), 115142.
[CEL10] Cieliebak, K., Ekholm, T. and Latschev, J., Compactness for holomorphic curves with switching Lagrangian boundary conditions , J. Symplectic Geom. 8 (2010), 267298.
[CE12] Cieliebak, K. and Eliashberg, Y., From Stein to Weinstein and back, American Mathematical Society Colloquium Publications, vol. 59 (American Mathematical Society, Providence, RI, 2012).
[CNS16] Cornwell, C., Ng, L. and Sivek, S., Obstructions to Lagrangian concordance , Algebr. Geom. Topol. 16 (2016), 797824.
[DE14] Dimitroglou-Rizell, G. and Evans, J., Unlinking and unknottedness of monotone Lagrangian submanifolds , Geom. Topol. 18 (2014), 9971034.
[Ekh98] Ekholm, T., Immersions in the metastable range and spin structures on surfaces , Math. Scand. 83 (1998), 541.
[Ekh16] Ekholm, T., Non-loose Legendrian spheres with trivial Contact Homology DGA , J. Topol. 9 (2016), 826848.
[EEMS13] Ekholm, T., Eliashberg, Y., Murphy, E. and Smith, I., Constructing exact Lagrangian immersions with few double points , Geom. Funct. Anal. 23 (2013), 17721803.
[EES05] Ekholm, T., Etnyre, J. and Sullivan, M., Non-isotopic Legendrian submanifolds in ℝ2n+1 , J. Differential Geom. 71 (2005), 85128.
[EKS16] Ekholm, T., Kragh, T. and Smith, I., Lagrangian exotic spheres , J. Topol. Anal. 8 (2016), 375397.
[EL17] Ekholm, T. and Lekili, Y., Duality between Lagrangian and Legendrian invariants, Preprint (2017), arXiv:1701.01284.
[ENS17] Ekholm, T., Ng, L. and Shende, V., A complete knot invariant from contact homology , Invent. Math. (2017), doi:10.1007/s00222-017-0761-1.
[ES14] Ekholm, T. and Smith, I., Exact Lagrangian immersions with one double point revisited , Math. Ann. 358 (2014), 195240.
[ES16] Ekholm, T. and Smith, I., Exact Lagrangian immersions with a single double point , J. Amer. Math. Soc. 29 (2016), 159.
[EGH00] Eliashberg, Y., Givental, A. and Hofer, H., Introduction to symplectic field theory , Geom. Funct. Anal. Special Volume, II (2000), 560673.
[EM13] Eliashberg, Y. and Murphy, E., Lagrangian caps , Geom. Funct. Anal. 23 (2013), 14831514.
[FR86] Fenn, R. and Rolfsen, D., Spheres may link homotopically in 4-sphere , J. Lond. Math. Soc. (2) 34 (1986), 177184.
[FSS08] Fukaya, K., Seidel, P. and Smith, I., Exact Lagrangian submanifolds in simply-connected cotangent bundles , Invent. Math. 172 (2008), 127.
[Gro86] Gromov, M., Partial Differential Relations (Springer, Berlin, 1986).
[Hae61] Haefliger, A., Plongements différentiables de variétés dans variétés , Comment. Math. Helv. 36 (1961), 4782.
[Kir90] Kirk, P., Link homotopy with one codimension two component , Trans. Amer. Math. Soc. 319 (1990), 663688.
[Kra13] Kragh, T., Parametrized ring-spectra and the nearby Lagrangian conjecture , Geom. Topol. 17 (2013), 639731.
[MR85] Massey, W. and Rolfsen, D., Homotopy classification of higher-dimensional links , Indiana Univ. Math. J. 34 (1985), 375391.
[Vit90] Viterbo, C., A new obstruction to embedding Lagrangian tori , Invent. Math. 100 (1990), 301320.
[Wel07] Welschinger, J.-Y., Effective classes and Lagrangian tori in symplectic four-manifolds , J. Symplectic Geom. 5 (2007), 918.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 2
Total number of PDF views: 29 *
Loading metrics...

Abstract views

Total abstract views: 102 *
Loading metrics...

* Views captured on Cambridge Core between 20th February 2018 - 16th July 2018. This data will be updated every 24 hours.