[Dav00]
Davenport, H., Multiplicative number theory, Graduate Texts in Mathematics, vol. 74 (Springer, 2000).
[Ell89]
Elliott, P. D. T. A.,
Extrapolating the mean-values of multiplicative functions
, Nederl. Akad. Wetensch. Indag. Math.
51 (1989), 409–420.
[Ell02a]
Elliott, P. D. T. A.,
Multiplicative functions on arithmetic progressions. VII. Large moduli
, J. Lond. Math. Soc. (2)
66 (2002), 14–28.
[Ell02b]
Elliott, P. D. T. A.,
The least prime primitive root and Linnik’s theorem
, inNumber theory for the millennium, I (Urbana, IL, 2000), 393–418. (A. K. Peters, Natick, MA, 2002).
[FI10]
Friedlander, J. B. and Iwaniec, H., Opera de Cribro, Colloquium Publications, vol. 57 (American Mathematical Society, Providence, MA, 2010).
[GHS15]
Granville, A., Harper, A. J. and Soundararajan, K.,
Mean values of multiplicative functions over function fields
, Res. Number Theory
1 (2015), 25; doi:10.1007/s40993-015-0023-5. [GHS18]
Granville, A., Harper, A. J. and Soundararajan, K.,
A more intuitive proof of a sharp version of Halász’s theorem
, Proc. Amer. Math. Soc.
146 (2018), 4099–4104.
[GS03]
Granville, A. and Soundararajan, K.,
Decay of mean values of multiplicative functions
, Canad. J. Math.
55 (2003), 1191–1230.
[Hal68]
Halász, G.,
Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen
, Acta Math. Acad. Sci. Hungar.
19 (1968), 365–403.
[Hal71]
Halász, G.,
On the distribution of additive and the mean values of multiplicative arithmetic functions
, Studia Sci. Math. Hungar.
6 (1971), 211–233.
[Kou13]
Koukoulopoulos, D.,
Pretentious multiplicative functions and the prime number theorem for arithmetic progressions
, Compos. Math.
149 (2013), 1129–1149.
[Mon]
Montgomery, H. L., A note on the mean values of multiplicative functions, Inst. Mittag-Leffler, (Report #17).
[MV01]
Montgomery, H. L. and Vaughan, R. C.,
Mean values of multiplicative functions
, Period. Math. Hungar.
43 (2001), 199–214.
[Shi80]
Shiu, P.,
A Brun-Titchmarsh theorem for multiplicative functions
, J. Reine Angew. Math.
313 (1980), 161–170.
[Sou10]
Soundararajan, K.,
Weak subconvexity for central values of L-functions
, Ann. of Math. (2)
172 (2010), 1469–1498.
[Ten95]
Tenenbaum, G., Introduction to analytic and probabilistic number theory (Cambridge University Press, Cambridge, 1995).