Hostname: page-component-857557d7f7-bvshn Total loading time: 0 Render date: 2025-12-15T03:41:41.386Z Has data issue: false hasContentIssue false

Non-split, alternating links bound unique Seifert surfaces in the 4-ball

Published online by Cambridge University Press:  15 December 2025

Seungwon Kim
Affiliation:
Department of Mathematics, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea seungwon.kim@skku.edu
Maggie Miller
Affiliation:
Department of Mathematics, The University of Texas at Austin, Austin, TX, USA maggie.miller.math@gmail.com
Jaehoon Yoo
Affiliation:
Department of Mathematics, Indiana University Bloomington, Bloomington, IN, USA jaehyoo@iu.edu

Abstract

We show that any two same-genus, oriented, boundary parallel surfaces bounded by a non-split, alternating link into the 4-ball are smoothly isotopic relative to the boundary. In other words, any same-genus Seifert surfaces for a non-split, alternating link become smoothly isotopic relative to the boundary once their interiors are pushed into the 4-ball. We conclude that a smooth surface in $S^4$ obtained by gluing two Seifert surfaces for a non-split alternating link is always smoothly unknotted.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, C. and Kindred, T., A classification of spanning surfaces for alternating links, Algebra Geom. Topologie 13 (2013), 29673007.10.2140/agt.2013.13.2967CrossRefGoogle Scholar
Aka, M., Feller, P., Miller, A. B. and Wieser, A., Seifert surfaces in the four-ball and composition of binary quadratic forms, Preprint (2024), arXiv:2311.17746.Google Scholar
Boyle, J., Classifying 1-handles attached to knotted surfaces, Trans. Amer. Math. Soc. 306 (1988), 475487.10.1090/S0002-9947-1988-0933302-XCrossRefGoogle Scholar
Conway, A. and Powell, M., Embedded surfaces with infinite cyclic knot group, Geom. Topologie 27 (2023), 739821.10.2140/gt.2023.27.739CrossRefGoogle Scholar
Crowell, R., Genus of alternating link types, Ann. of Math. (2) 69 (1959), 258275.10.2307/1970181CrossRefGoogle Scholar
Hatcher, A., Notes on basic 3-manifold topology (2007), https://pi.math.cornell.edu/hatcher/3M/3Mdownloads.html Google Scholar
Hayden, K., Kim, S., Miller, M., Park, J. and Sundberg, I., Seifert surfaces in the 4-ball, J. Eur. Math. Soc. (2025), to appear. Preprint (2023), arXiv:2205.15283.Google Scholar
Hirasawa, M. and Sakuma, M., Minimal genus Seifert surfaces for alternating links , in KNOTS ’96 (Tokyo) (World Scientific Publishing, River Edge, NJ, 1997), 383394.Google Scholar
Johnson, J., Pelayo, R. and Wilson, R., The coarse geometry of the Kakimizu complex, Algebra Geom. Topologie 14 (2014), 25492560.10.2140/agt.2014.14.2549CrossRefGoogle Scholar
Kakimizu, O., Finding disjoint incompressible spanning surfaces for a link, Hiroshima Math. J. 22 (1992), 225236.Google Scholar
Kindred, T., Alternating links have representativity 2, Algebra Geom. Topologie 18 (2018), 33393362.Google Scholar
Kobayashi, T., Uniqueness of minimal genus Seifert surfaces for links. Topology Appl. 33 (1989), 265279.10.1016/0166-8641(89)90107-7CrossRefGoogle Scholar
Lickorish, W. B. R., An introduction to knot theory, Graduate Texts in Mathematics, vol. 175 (Springer-Verlag, New York, 1997).10.1007/978-1-4612-0691-0CrossRefGoogle Scholar
Lyon, H. C., Simple knots with unique spanning surfaces, Topology 13 (1974), 275279.10.1016/0040-9383(74)90020-2CrossRefGoogle Scholar
Murasugi, K., On the genus of the alternating knot. I, II, J. Math. Soc. Japan 10 (1958), 94–105, 235248.Google Scholar
Przytycki, P. and Schultens, J., Contractibility of the Kakimizu complex and symmetric Seifert surfaces, Trans. Amer. Math. Soc. 364 (2012), 14891508.10.1090/S0002-9947-2011-05465-6CrossRefGoogle Scholar
Roberts, L. P., On non-isotopic spanning surfaces for a class of arborescent knots, J. Knot Theory Ramifications 22 (2013), 1350075.10.1142/S0218216513500752CrossRefGoogle Scholar
Schubert, H. and Soltsien, K., Isotopie von Flächen in einfachen Knoten. Abh. Math. Sem. Univ. Hamburg 27 (1964), 116123.10.1007/BF02993061CrossRefGoogle Scholar
Trotter, H. F., Some knots spanned by more than one knotted surface of mininal genus, in Knots, groups, and 3-manifolds (papers dedicated to the memory of R. H. Fox), Annals of Mathematical Studies, vol. 84 (Princeton University Press, Princeton, NJ, 1975), 51–62.10.1515/9781400881512-007CrossRefGoogle Scholar