Skip to main content
×
×
Home

Odd zeta motive and linear forms in odd zeta values

  • Clément Dupont (a1)
Abstract

We study a family of mixed Tate motives over  $\mathbb{Z}$ whose periods are linear forms in the zeta values  $\unicode[STIX]{x1D701}(n)$ . They naturally include the Beukers–Rhin–Viola integrals for  $\unicode[STIX]{x1D701}(2)$ and the Ball–Rivoal linear forms in odd zeta values. We give a general integral formula for the coefficients of the linear forms and a geometric interpretation of the vanishing of the coefficients of a given parity. The main underlying result is a geometric construction of a minimal ind-object in the category of mixed Tate motives over  $\mathbb{Z}$ which contains all the non-trivial extensions between simple objects. In a joint appendix with Don Zagier, we prove the compatibility between the structure of the motives considered here and the representations of their periods as sums of series.

Copyright
References
Hide All
[Apé79] Apéry, R., Irrationalité de 𝜁(2) et 𝜁(3) , Astérisque 61 (1979), 1113.
[BR01] Ball, K. and Rivoal, T., Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs , Invent. Math. 146 (2001), 193207.
[Beu79] Beukers, F., A note on the irrationality of 𝜁(2) and 𝜁(3) , Bull. Lond. Math. Soc. 11 (1979), 268272.
[Blo86] Bloch, S., Algebraic cycles and higher K-theory , Adv. Math. 61 (1986), 267304.
[Bor77] Borel, A., Cohomologie de SL n et valeurs de fonctions zeta aux points entiers , Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 4 (1977), 613636.
[Bro16] Brown, F., Irrationality proofs for zeta values, moduli spaces and dinner parties , Mosc. J. Comb. Number Theory 6 (2016), 102165.
[CFR08a] Cresson, J., Fischler, S. and Rivoal, T., Phénomènes de symétrie dans des formes linéaires en polyzêtas , J. Reine Angew. Math. 617 (2008), 109151.
[CFR08b] Cresson, J., Fischler, S. and Rivoal, T., Séries hypergéométriques multiples et polyzêtas , Bull. Soc. Math. France 136 (2008), 97145.
[Del71] Deligne, P., Théorie de Hodge II , Publ. Math. Inst. Hautes Études Sci. 40 (1971), 557.
[Del74] Deligne, P., Théorie de Hodge III , Publ. Math. Inst. Hautes Études Sci. 44 (1974), 577.
[Del89] Deligne, P., Le groupe fondamental de la droite projective moins trois points , in Galois groups over Q , Berkeley, CA, 1987, Mathematical Sciences Research Institute Publications, vol. 16 (Springer, New York, NY, 1989), 79297.
[DG05] Deligne, P. and Goncharov, A. B., Groupes fondamentaux motiviques de Tate mixte , Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), 156.
[Dup17] Dupont, C., Relative cohomology of bi-arrangements , Trans. Amer. Math. Soc. 369 (2017), 81058160.
[Fis04] Fischler, S., Irrationalité de valeurs de zêta (d’après Apéry, Rivoal, …) , Astérisque 294 (2004), vii, 2762.
[Foa77] Foata, D., Distributions eulériennes et mahoniennes sur le groupe des permutations , in Higher combinatorics: Proc. NATO Advanced Study Institute, Berlin, 1976, NATO Advanced Study Institutes Series, Series C, vol. 31 (Reidel, Dordrecht, 1977), 2749.
[Foa10] Foata, D., Eulerian polynomials: from Euler’s time to the present , in The legacy of Alladi Ramakrishnan in the mathematical sciences (Springer, New York, 2010), 253273.
[Gon02] Goncharov, A. B., Periods and mixed motives, Preprint (2002), arXiv:math.AG/0202154.
[GM04] Goncharov, A. B. and Manin, Yu. I., Multiple 𝜁-motives and moduli spaces M 0, n , Compos. Math. 140 (2004), 114.
[Hat02] Hatcher, A., Algebraic topology (Cambridge University Press, Cambridge, 2002).
[Hub00] Huber, A., Realization of Voevodsky’s motives , J. Algebraic Geom. 9 (2000), 755799.
[Hub04] Huber, A., Corrigendum to: “Realization of Voevodsky’s motives” [J. Algebraic Geom.] 9 (2000) 755–799; mr1775312 , J. Algebraic Geom. 13 (2004), 195207.
[Lev93] Levine, M., Tate motives and the vanishing conjectures for algebraic K-theory , in Algebraic K-theory and algebraic topology Lake Louise, AB, 1991, NATO Advanced Study Institutes Series, Series C, vol. 407 (Kluwer Academic, Dordrecht, 1993), 167188.
[Riv00] Rivoal, T., La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs , C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 267270.
[RV96] Rhin, G. and Viola, C., On a permutation group related to 𝜁(2) , Acta Arith. 77 (1996), 2356.
[RV01] Rhin, G. and Viola, C., The group structure for 𝜁(3) , Acta Arith. 97 (2001), 269293.
[Voe00] Voevodsky, V., Triangulated categories of motives over a field , in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 188238.
[Zud04] Zudilin, W., Arithmetic of linear forms involving odd zeta values , J. Théor. Nombres Bordeaux 16 (2004), 251291.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed