Hostname: page-component-76c49bb84f-hwk5l Total loading time: 0 Render date: 2025-07-06T00:50:33.642Z Has data issue: false hasContentIssue false

On admissible tensor products in p-adic Hodge theory

Published online by Cambridge University Press:  14 February 2013

Giovanni Di Matteo*
Affiliation:
UMPA ENS de Lyon, UMR 5669 du CNRS, Université de Lyon, France (email: giovanni.di.matteo@ens-lyon.fr)

Abstract

We prove that if W and W′ are non-zero B-pairs whose tensor product is crystalline (or semi-stable or de Rham or Hodge–Tate), then there exists a character μ such that W(μ−1) and W′(μ) are crystalline (or semi-stable or de Rham or Hodge–Tate). We also prove that if W is a B-pair and if F is a Schur functor (for example Sym n or Λn) such that F(W)is crystalline (or semi-stable or de Rham or Hodge–Tate) and if the rank of W is sufficiently large, then there is a character μ such that W(μ−1)is crystalline (or semi-stable or de Rham or Hodge–Tate). In particular, these results apply to p-adic representations.

MSC classification

Information

Type
Research Article
Copyright
Copyright © 2013 The Author(s)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

[And02]André, Y., Représentations galoisiennes et opérateurs de Bessel p-adiques, Ann. Inst. Fourier (Grenoble) 52 (2002), 779808.CrossRefGoogle Scholar
[Ber02]Berger, L., Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219284.CrossRefGoogle Scholar
[Ber08]Berger, L., Construction de (φ,Γ)-modules: représentations p-adiques et B-paires, Algebra Number Theory 2 (2008), 91120.CrossRefGoogle Scholar
[BC10]Berger, L. and Chenevier, G., Représentations potentiellement triangulines de dimension 2, J. Théor. Nombres Bordeaux 22 (2010), 557574.CrossRefGoogle Scholar
[Col93]Colmez, P., Périodes des variétés abéliennes à multiplication complexe, Ann. of Math. (2) 138 (1993), 625683.CrossRefGoogle Scholar
[Fon94a]Fontaine, J.-M., Le corps des périodes p-adiques. Avec un appendice par Pierre Colmez: Les nombres algébriques sont denses dans B +dR, Astérisque 223 (1994), 59111.Google Scholar
[Fon94b]Fontaine, J.-M., Représentations p-adiques semi-stables, Astérisque 223 (1994), 113184.Google Scholar
[Fon04]Fontaine, J.-M., Arithmétique des représentations galoisiennes p-adiques, Cohomologies p-adiques et applications arithmétiques (III), Astérisque 295 (2004), 1115.Google Scholar
[Ful97]Fulton, W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, vol. 35 (Cambridge University Press, Cambridge, 1997).Google Scholar
[Ked04]Kedlaya, K., A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), 93184.CrossRefGoogle Scholar
[Meb02]Mebkhout, Z., Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique, Invent. math. 148 (2002), 319351.CrossRefGoogle Scholar
[Nak09]Nakamura, K., Classification of two-dimensional split trianguline representations of p-adic fields, Compos. Math. 145 (2009), 865914.CrossRefGoogle Scholar
[Sen80]Sen, S., Continuous cohomology and p-adic Galois representations, Invent. Math. 62 (1980), 89116.CrossRefGoogle Scholar
[Ski09]Skinner, C., A note on the p-adic Galois representations attached to Hilbert modular forms, Doc. Math. 14 (2009), 241258.CrossRefGoogle Scholar
[Win95]Wintenberger, J.-P., Relèvement selon une isogénie de systèmes -adiques de représentations galoisiennes associés aux motifs, Invent. math. 120 (1995), 215240.CrossRefGoogle Scholar
[Win97]Wintenberger, J.-P., Propriétés du groupe tannakien des structures de Hodge p-adiques et torseur entre cohomologies cristalline et étale, Ann. Inst. Fourier (Grenoble) 47 (1997), 12891334.CrossRefGoogle Scholar