Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.395 Render date: 2022-08-08T05:17:50.449Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

On classical irregular q-difference equations

Published online by Cambridge University Press:  25 July 2012

Julien Roques*
Affiliation:
Institut Fourier, Université Grenoble 1, UMR CNRS 5582, 100 rue des Maths, BP 74, 38402 St Martin d’Hères, France (email: Julien.Roques@ujf-grenoble.fr)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The primary aim of this paper is to (provide tools to) compute Galois groups of classical irregular q-difference equations. We are particularly interested in quantizations of certain differential equations that arise frequently in the mathematical and physical literature, namely confluent generalized q-hypergeometric equations and q-Kloosterman equations.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[And01]André, Y., Différentielles non commutatives et théorie de Galois différentielle ou aux différences, Ann. Sci. Éc. Norm. Supér (4) 34 (2001), 685739.CrossRefGoogle Scholar
[BBH88]Beukers, F., Brownawell, W. D. and Heckman, G., Siegel normality, Ann. of Math. (2) 127 (1988), 279308.CrossRefGoogle Scholar
[Bou75]Bourbaki, N., Groupes et algèbres de Lie: Chapitres 7 et 8 (Hermann, Paris, 1975).Google Scholar
[CR08]Casale, G. and Roques, J., Dynamics of rational symplectic mappings and difference Galois theory, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 103.Google Scholar
[CR11]Casale, G. and Roques, J., Nonintegrability by discrete quadratures, Preprint (2011), available at http://www-fourier.ujf-grenoble.fr/∼jroques/.Google Scholar
[DM81]Deligne, P. and Milne, J. S., Tannakian categories in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900 (Springer, Berlin, 1981).CrossRefGoogle Scholar
[DiV02]Di Vizio, L., Arithmetic theory of q-difference equations: the q-analogue of Grothendieck-Katz’s conjecture on p-curvatures, Invent. Math. 150 (2002), 517578.CrossRefGoogle Scholar
[DM89]Duval, A. and Mitschi, C., Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées, Pacific J. Math. 138 (1989), 2556.CrossRefGoogle Scholar
[Kat87]Katz, N. M., On the calculation of some differential Galois groups, Invent. Math. 87 (1987), 1361.CrossRefGoogle Scholar
[Kat90]Katz, N. M., Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124 (Princeton University Press, Princeton, NJ, 1990).CrossRefGoogle Scholar
[KP87]Katz, N. M. and Pink, R., A note on pseudo-CM representations and differential Galois groups, Duke Math. J. 54 (1987), 5765.CrossRefGoogle Scholar
[Kos58]Kostant, B., A characterization of the classical groups, Duke Math. J. 25 (1958), 107123.CrossRefGoogle Scholar
[Mit96]Mitschi, C., Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers, Pacific J. Math. 176 (1996), 365405.CrossRefGoogle Scholar
[RS07]Ramis, J.-P. and Sauloy, J., The q-analogue of the wild fundamental group. I, in Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies, RIMS Kôkyûroku Bessatsu, vol. B2 (Research Institute for Mathematical Sciences (RIMS), Kyoto, 2007), 167193.Google Scholar
[RS09]Ramis, J. -P. and Sauloy, J., The q-analogue of the wild fundamental group. II, Astérisque 323 (2009), 301324.Google Scholar
[Roq11]Roques, J., Generalized basic hypergeometric equations, Invent. Math. 184 (2011), 499528.CrossRefGoogle Scholar
[Sau00]Sauloy, J., Systèmes aux q-différences singuliers réguliers: classification, matrice de connexion et monodromie, Ann. Inst. Fourier (Grenoble) 50 (2000), 10211071.CrossRefGoogle Scholar
[Sau03]Sauloy, J., Galois theory of Fuchsian q-difference equations, Ann. Sci. Éc. Norm. Supér. (4) 36 (2003), 925968.CrossRefGoogle Scholar
[Sau04]Sauloy, J., La filtration canonique par les pentes d’un module aux q-différences et le gradué associé, Ann. Inst. Fourier (Grenoble) 54 (2004), 181210.CrossRefGoogle Scholar
[Ser67]Serre, J.-P., Sur les groupes de Galois attachés aux groupes p-divisibles, in Proceedings of a conference on local fields (Driebergen, 1966) (Springer, Berlin, 1967), 118131.CrossRefGoogle Scholar
[Ser79]Serre, J.-P., Groupes algébriques associés aux modules de Hodge-Tate, Astérisque 65 (1979), 155188 Journées de Géométrie Algébrique de Rennes (Rennes, 1978), vol. III.Google Scholar
[vdPR07]van der Put, M. and Reversat, M., Galois theory of q-difference equations, Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), 665718.CrossRefGoogle Scholar
[vdPS97]van der Put, M. and Singer, M. F., Galois theory of difference equations, Lecture Notes in Mathematics, vol. 1666 (Springer, Berlin, 1997).CrossRefGoogle Scholar
You have Access
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On classical irregular q-difference equations
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On classical irregular q-difference equations
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On classical irregular q-difference equations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *