Skip to main content

On log del Pezzo surfaces in large characteristic

  • Paolo Cascini (a1), Hiromu Tanaka (a2) and Jakub Witaszek (a3)

We show that any Kawamata log terminal del Pezzo surface over an algebraically closed field of large characteristic is globally $F$ -regular or it admits a log resolution which lifts to characteristic zero. As a consequence, we prove the Kawamata–Viehweg vanishing theorem for klt del Pezzo surfaces of large characteristic.

Hide All
[Ale93] Alexeev, V., Two two-dimensional terminations , Duke Math. J. 69 (1993), 527545.
[Ale94] Alexeev, V., Boundedness and K 2 for log surfaces , Int. J. Math. 5 (1994), 779810.
[Băd01] Bădescu, L., Algebraic surfaces (Universitext, Springer, New York, 2001).
[Bir16] Birkar, C., Existence of flips and minimal models for 3-folds in char p , Ann. Sci. Éc. Norm. Supér. 49 (2016), 169212.
[BW14] Birkar, C. and Waldron, J., Existence of Mori fibre spaces for 3-folds in char $p$ , Preprint (2014), arXiv:1410.4511.
[CGS16] Cascini, P., Gongyo, Y. and Schwede, K., Uniform bounds for strongly F-regular surfaces , Trans. Amer. Math. Soc. 368 (2016), 55475563.
[CTW17] Cascini, P., Tanaka, H. and Witaszek, J., Klt del Pezzo surfaces which are not globally F-split , Int. Math. Res. Not. IMRN (2017), doi:10.1093/imrn/rnw300.
[CTX15] Cascini, P., Tanaka, H. and Xu, C., On base point freeness in positive characteristic , Ann. Sci. Éc. Norm. Supér. 48 (2015), 12391272.
[Das15] Das, O., On strongly F-regular inversion of adjunction , J. Algebra 434 (2015), 207226.
[EV92] Esnault, H. and Viehweg, E., Lectures on vanishing theorems, DMV Seminar, vol. 20 (Birkhäuser, Basel, 1992).
[FGIKNV05] Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S. L., Nitsure, N. and Vistoli, A., Fundamental algebraic geometry (American Mathematical Society, Providence, RI, 2005).
[FK88] Freitag, E. and Kiehl, R., Étale cohomology and the Weil conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 13 (Springer, Berlin, 1988).
[Fu15] Fu, L., Etale cohomology theory, Nankai Tracts in Mathematics, vol. 14, revised edn (World Scientific, Hackensack, NJ, 2015).
[Fuj12] Fujino, O., Minimal model theory for log surfaces , Publ. Res. Inst. Math. Sci. 48 (2012), 339371.
[HX15] Hacon, C. and Xu, C., On the three dimensional minimal model program in positive characteristic , J. Amer. Math. Soc. 28 (2015), 711744.
[Har98] Hara, N., A characterization of rational singularities in terms of injectivity of Frobenius maps , Amer. J. Math. 120 (1998), 981996.
[KM99] Keel, S. and McKernan, J., Rational curves on quasi-projective surfaces, Memoirs American Mathematical Society, vol. 669 (American Mathematical Society, Providence, RI, 1999).
[Kol13] Kollár, J., Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200 (Cambridge University Press, Cambridge, 2013).
[KM98] Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).
[Kol92] Kollár, J. et al. , Flips and abundance for algebraic threefolds (Société Mathématique de France, Paris, 1992).
[Lan16] Langer, A., The Bogomolov–Miyaoka–Yau inequality for logarithmic surfaces in positive characteristic , Duke Math. J. 165 (2016), 27372769.
[Liu02] Liu, Q., Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6 (Oxford University Press, Oxford, 2002).
[MP04] McKernan, J. and Prokhorov, Y., Threefold thresholds , Manuscripta Math. 114 (2004), 281304.
[Pro01] Prokhorov, Y., Lectures on complements on log surfaces, MSJ Memoirs, vol. 10 (Mathematical Society of Japan, Tokyo, 2001).
[Sch09] Schwede, K., F-adjunction , Algebra Number Theory 3 (2009), 907950.
[Sch14] Schwede, K., A canonical linear system associated to adjoint divisors in characteristic p > 0 , J. Reine Angew. Math. 696 (2014), 6987.
[SS10] Schwede, K. and Smith, K. E., Globally F-regular and log Fano varieties , Adv. Math. 224 (2010), 863894.
[Tan14] Tanaka, H., Minimal models and abundance for positive characteristic log surfaces , Nagoya Math. J. 216 (2014), 170.
[Tan15] Tanaka, H., The X-method for klt surfaces in positive characteristic , J. Algebraic Geom. 24 (2015), 605628.
[Wat91] Watanabe, K., F-regular and F-pure normal graded rings , J. Pure Appl. Algebra 71 (1991), 341350.
[Wit15] Witaszek, J., Effective bounds on singular surfaces in positive characteristic , Michigan Math. J. (2015), to appear.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 8
Total number of PDF views: 63 *
Loading metrics...

Abstract views

Total abstract views: 298 *
Loading metrics...

* Views captured on Cambridge Core between 8th March 2017 - 27th May 2018. This data will be updated every 24 hours.