Skip to main content
    • Aa
    • Aa

On log del Pezzo surfaces in large characteristic

  • Paolo Cascini (a1), Hiromu Tanaka (a2) and Jakub Witaszek (a3)

We show that any Kawamata log terminal del Pezzo surface over an algebraically closed field of large characteristic is globally $F$ -regular or it admits a log resolution which lifts to characteristic zero. As a consequence, we prove the Kawamata–Viehweg vanishing theorem for klt del Pezzo surfaces of large characteristic.

Hide All
V. Alexeev , Two two-dimensional terminations , Duke Math. J. 69 (1993), 527545.

V. Alexeev , Boundedness and K 2 for log surfaces , Int. J. Math. 5 (1994), 779810.

L. Bădescu , Algebraic surfaces (Universitext, Springer, New York, 2001).

C. Birkar , Existence of flips and minimal models for 3-folds in char p , Ann. Sci. Éc. Norm. Supér. 49 (2016), 169212.

P. Cascini , Y. Gongyo and K. Schwede , Uniform bounds for strongly F-regular surfaces , Trans. Amer. Math. Soc. 368 (2016), 55475563.

P. Cascini , H. Tanaka and J. Witaszek , Klt del Pezzo surfaces which are not globally F-split , Int. Math. Res. Not. IMRN (2017), doi:10.1093/imrn/rnw300.

P. Cascini , H. Tanaka and C. Xu , On base point freeness in positive characteristic , Ann. Sci. Éc. Norm. Supér. 48 (2015), 12391272.

O. Das , On strongly F-regular inversion of adjunction , J. Algebra 434 (2015), 207226.

H. Esnault and E. Viehweg , Lectures on vanishing theorems, DMV Seminar, vol. 20 (Birkhäuser, Basel, 1992).

E. Freitag and R. Kiehl , Étale cohomology and the Weil conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 13 (Springer, Berlin, 1988).

L. Fu , Etale cohomology theory, Nankai Tracts in Mathematics, vol. 14, revised edn (World Scientific, Hackensack, NJ, 2015).

C. Hacon and C. Xu , On the three dimensional minimal model program in positive characteristic , J. Amer. Math. Soc. 28 (2015), 711744.

N. Hara , A characterization of rational singularities in terms of injectivity of Frobenius maps , Amer. J. Math. 120 (1998), 981996.

J. Kollár , Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200 (Cambridge University Press, Cambridge, 2013).

J. Kollár and S. Mori , Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).

A. Langer , The Bogomolov–Miyaoka–Yau inequality for logarithmic surfaces in positive characteristic , Duke Math. J. 165 (2016), 27372769.

J. McKernan and Y. Prokhorov , Threefold thresholds , Manuscripta Math. 114 (2004), 281304.

K. Schwede , F-adjunction , Algebra Number Theory 3 (2009), 907950.

K. Schwede and K. E. Smith , Globally F-regular and log Fano varieties , Adv. Math. 224 (2010), 863894.

H. Tanaka , Minimal models and abundance for positive characteristic log surfaces , Nagoya Math. J. 216 (2014), 170.

H. Tanaka , The X-method for klt surfaces in positive characteristic , J. Algebraic Geom. 24 (2015), 605628.

K. Watanabe , F-regular and F-pure normal graded rings , J. Pure Appl. Algebra 71 (1991), 341350.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 7
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 161 *
Loading metrics...

* Views captured on Cambridge Core between 8th March 2017 - 26th September 2017. This data will be updated every 24 hours.