Published online by Cambridge University Press: 05 September 2022
Let  $p$ be a rational prime, let
$p$ be a rational prime, let  $F$ denote a finite, unramified extension of
$F$ denote a finite, unramified extension of  ${{\mathbb {Q}}}_p$, let
${{\mathbb {Q}}}_p$, let  $K$ be the maximal unramified extension of
$K$ be the maximal unramified extension of  ${{\mathbb {Q}}}_p$,
${{\mathbb {Q}}}_p$,  ${{\overline {K}}}$ some fixed algebraic closure of
${{\overline {K}}}$ some fixed algebraic closure of  $K$, and
$K$, and  ${{\mathbb {C}}}_p$ be the completion of
${{\mathbb {C}}}_p$ be the completion of  ${{\overline {K}}}$. Let
${{\overline {K}}}$. Let  $G_F$ be the absolute Galois group of
$G_F$ be the absolute Galois group of  $F$. Let
$F$. Let  $A$ be an abelian variety defined over
$A$ be an abelian variety defined over  $F$, with good reduction. Classically, the Fontaine integral was seen as a Hodge–Tate comparison morphism, i.e. as a map
$F$, with good reduction. Classically, the Fontaine integral was seen as a Hodge–Tate comparison morphism, i.e. as a map  $\varphi _{A} \otimes 1_{{{\mathbb {C}}}_p}\colon T_p(A)\otimes _{{{\mathbb {Z}}}_p}{{\mathbb {C}}}_p\to \operatorname {Lie}(A)(F)\otimes _F{{\mathbb {C}}}_p(1)$, and as such it is surjective and has a large kernel. This paper starts with the observation that if we do not tensor
$\varphi _{A} \otimes 1_{{{\mathbb {C}}}_p}\colon T_p(A)\otimes _{{{\mathbb {Z}}}_p}{{\mathbb {C}}}_p\to \operatorname {Lie}(A)(F)\otimes _F{{\mathbb {C}}}_p(1)$, and as such it is surjective and has a large kernel. This paper starts with the observation that if we do not tensor  $T_p(A)$ with
$T_p(A)$ with  ${{\mathbb {C}}}_p$, then the Fontaine integral is often injective. In particular, it is proved that if
${{\mathbb {C}}}_p$, then the Fontaine integral is often injective. In particular, it is proved that if  $T_p(A)^{G_K} = 0$, then
$T_p(A)^{G_K} = 0$, then  $\varphi _A$ is injective. As an application, we extend the Fontaine integral to a perfectoid like universal cover of
$\varphi _A$ is injective. As an application, we extend the Fontaine integral to a perfectoid like universal cover of  $A$ and show that if
$A$ and show that if  $T_p(A)^{G_K} = 0$, then
$T_p(A)^{G_K} = 0$, then  $A(\overline {K})$ has a type of
$A(\overline {K})$ has a type of  $p$-adic uniformization, which resembles the classical complex uniformization.
$p$-adic uniformization, which resembles the classical complex uniformization.
With an appendix by Yeuk Hay Joshua Lam and Alexander Petrov
 $p$-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), 1–84; MR 1702143.CrossRefGoogle Scholar
$p$-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), 1–84; MR 1702143.CrossRefGoogle Scholar $p$-adic abelian integrals, Invent. Math. 78 (1984), 351–379.CrossRefGoogle Scholar
$p$-adic abelian integrals, Invent. Math. 78 (1984), 351–379.CrossRefGoogle Scholar $p$-adic abelian integrals, Ann. Math. 121 (1985), 111–168.CrossRefGoogle Scholar
$p$-adic abelian integrals, Ann. Math. 121 (1985), 111–168.CrossRefGoogle Scholar $p$-adiques des variétés abéliennes, Math. Ann. 292 (1992), 629–644.CrossRefGoogle Scholar
$p$-adiques des variétés abéliennes, Math. Ann. 292 (1992), 629–644.CrossRefGoogle Scholar $B^{+}_{\text {dR}}$, in Périodes
$B^{+}_{\text {dR}}$, in Périodes  $p$-adiques, Astérisque, vol. 223 (Société Mathématique de France, 1994).Google Scholar
$p$-adiques, Astérisque, vol. 223 (Société Mathématique de France, 1994).Google Scholar $p$-adiques, Astérisque 248 (1998); MR 1645429.Google Scholar
$p$-adiques, Astérisque 248 (1998); MR 1645429.Google Scholar $p$-divisibles, Math. Ann. 374 (2019), 723–791; MR 3961325.CrossRefGoogle Scholar
$p$-divisibles, Math. Ann. 374 (2019), 723–791; MR 3961325.CrossRefGoogle Scholar $p$-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), 529–577; MR 657238.CrossRefGoogle Scholar
$p$-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), 529–577; MR 657238.CrossRefGoogle Scholar $p$-adiques semi-stables, in Périodes
$p$-adiques semi-stables, in Périodes  $p$-adiques, Astérisque, vol. 223 (Société Mathématique de France, 1994), 113–184; MR 1293972.Google Scholar
$p$-adiques, Astérisque, vol. 223 (Société Mathématique de France, 1994), 113–184; MR 1293972.Google Scholar $C_p$-représentations, Doc. Math., Extra Vol., Kazuya Kato's Fiftieth Birthday (2003), 285–385.Google Scholar
$C_p$-représentations, Doc. Math., Extra Vol., Kazuya Kato's Fiftieth Birthday (2003), 285–385.Google Scholar $B^{+}_{\text {dR}}$, Compos. Math. 117 (1999), 1–33.CrossRefGoogle Scholar
$B^{+}_{\text {dR}}$, Compos. Math. 117 (1999), 1–33.CrossRefGoogle Scholar $p$-adic field, Publ. Res. Inst. Math. Sci. 45 (2010), 1011–1031.CrossRefGoogle Scholar
$p$-adic field, Publ. Res. Inst. Math. Sci. 45 (2010), 1011–1031.CrossRefGoogle Scholar $p$-divisible groups, Camb. J. Math. 1 (2013), 145–237.CrossRefGoogle Scholar
$p$-divisible groups, Camb. J. Math. 1 (2013), 145–237.CrossRefGoogle Scholar $\textit{p}$-adic Galois representations, Invent. Math. 62 (1980/81), 89–116; MR 595584.CrossRefGoogle Scholar
$\textit{p}$-adic Galois representations, Invent. Math. 62 (1980/81), 89–116; MR 595584.CrossRefGoogle Scholar $\ell$-adic representations and elliptic curves, revised reprint of the 1968 original, Research Notes in Mathematics, vol. 7 (AK Peters, Wellesley, MA, 1998); MR 1484415.Google Scholar
$\ell$-adic representations and elliptic curves, revised reprint of the 1968 original, Research Notes in Mathematics, vol. 7 (AK Peters, Wellesley, MA, 1998); MR 1484415.Google Scholar $\textit{p}$-Divisible groups, Proceedings of a conference on local fields (Springer, 1967), 158–183.CrossRefGoogle Scholar
$\textit{p}$-Divisible groups, Proceedings of a conference on local fields (Springer, 1967), 158–183.CrossRefGoogle Scholar