Hostname: page-component-54dcc4c588-r5qjk Total loading time: 0 Render date: 2025-09-23T16:45:29.872Z Has data issue: false hasContentIssue false

On the kernel of $\mathrm{SO}(3)$-Witten–Reshetikhin–Turaev quantum representations

Published online by Cambridge University Press:  17 September 2025

Renaud Detcherry
Affiliation:
Institut de Mathématiques de Bourgogne, UMR 5584, CNRS, Université Bourgogne Franche-Comté, F-21000 Dijon, France renaud.detcherry@u-bourgogne.fr
Ramanujan Santharoubane
Affiliation:
Laboratoire de Mathématique d’Orsay, UMR 8628, CNRS, Université Paris-Saclay, Bâtiment 307, 91405 Orsay Cedex, France ramanujan.santharoubane@universite-paris-saclay.fr

Abstract

In this paper, we study the kernels of the $\mathrm{SO}(3)$-Witten–Reshetikhin–Turaev quantum representations $\rho_p$ of mapping class groups of closed orientable surfaces $\Sigma_g$ of genus g. We investigate the question whether the kernel of $\rho_p$ for p prime is exactly the subgroup generated by pth powers of Dehn twists. We show that if $g\geq 3$ and $p\geq 5$ then $\mathrm{Ker} \rho_p$ is contained in the subgroup generated by pth powers of Dehn twists and separating twists, and if $g\geq 6$ and p is a large enough prime then $\mathrm{Ker} \rho_p$ is contained in the subgroup generated by the commutator subgroup of the Johnson subgroup and by pth powers of Dehn twists.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andersen, J. E., Asymptotic faithfulness of the quantum ${\rm SU}(n)$ representations of the mapping class groups, Ann. of Math. (2) 163 (2006), 347368.CrossRefGoogle Scholar
Blanchet, C., Habegger, N., Masbaum, G. and Vogel, P., Three-manifold invariants derived from the Kauffman bracket , Topology 31 (1992), 685699.Google Scholar
Childers, L. R., Simply intersecting pair maps in the mapping class group , J. Knot Theory Ramifications 21 (2012), 1250107.10.1142/S0218216512501076CrossRefGoogle Scholar
Church, T., Ershov, M. and Putman, A., On finite generation of the Johnson filtrations , J. Eur. Math. Soc. (JEMS) 24 (2022), 28752914.CrossRefGoogle Scholar
Deroin, B. and Marché, J., Toledo invariants of topological quantum field theories, Preprint (2022), arXiv:2207.09952.Google Scholar
Dieudonné, J. A., La géométrie des groupes classiques , Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5, third edition (Springer, Berlin, 1971).Google Scholar
Dimca, A., Hain, R. and Papadima, S., The abelianization of the Johnson kernel , J. Eur. Math. Soc. (JEMS) 16 (2014), 805822.10.4171/jems/447CrossRefGoogle Scholar
Dimca, A. and Papadima, S., Arithmetic group symmetry and finiteness properties of Torelli groups , Ann. of Math. (2) 177 (2013), 395423.CrossRefGoogle Scholar
Faes, Q., Triviality of the $J_4$ -equivalence among homology 3-spheres, Trans. Amer. Math. Soc. 375 (2022), 65976620.Google Scholar
Foulle, S., Characters of the irreducible representations with fundamental highest weight for the symplectic group in characteristic p, Preprint (2005), arXiv:math/0512312.Google Scholar
Freedman, M. H., Walker, K. and Wang, Z., Quantum $\rm SU(2)$ faithfully detects mapping class groups modulo center , Geom. Topol. 6 (2002), 523539.CrossRefGoogle Scholar
Funar, L., On the TQFT representations of the mapping class groups , Pacific J. Math. 188 (1999), 251274.CrossRefGoogle Scholar
Gilmer, P. M. and Masbaum, G., Integral lattices in TQFT , Ann. Sci. Éc. Norm. Super. (4) 40 (2007), 815844.10.1016/j.ansens.2007.07.002CrossRefGoogle Scholar
Gilmer, P. M. and Masbaum, G., Irreducible factors of modular representations of mapping class groups arising in integral TQFT , Quantum Topol. 5 (2014), 225258.10.4171/qt/51CrossRefGoogle Scholar
Gilmer, P. M. and Masbaum, G., An application of TQFT to modular representation theory , Invent. Math. 210 (2017), 501530.Google Scholar
Hain, R., Infinitesimal presentations of the Torelli groups , J. Amer. Math. Soc. 10 (1997), 597651.CrossRefGoogle Scholar
Johnson, D., The structure of the Torelli group. I. A finite set of generators for ${\mathcal{I}}$ , Ann. of Math. (2) 118 (1983), 423442.CrossRefGoogle Scholar
Johnson, D., The structure of the Torelli group. III. The abelianization of $\mathcal{T}$ , Topology 24 (1985), 127144.Google Scholar
Koberda, T. and Santharoubane, R., Quotients of surface groups and homology of finite covers via quantum representations , Invent. Math. 206 (2016), 269292.Google Scholar
Korinman, J., Decomposition of some Witten-Reshetikhin-Turaev representations into irreducible factors, SIGMA Symmetry Integrability Geom . Methods Appl. 15 (2019), 25.Google Scholar
Masbaum, G., An element of infinite order in TQFT-representations of mapping class groups, in Low-dimensional topology (Funchal, 1998) , Contemporary Mathematics, vol. 233 (American Mathematical Society, Providence, RI, 1999), 137139.Google Scholar
Masbaum, G., On representations of mapping class groups in integral TQFT, Oberwolfach Rep. 5 (2008), 1202–1205.Google Scholar
Masbaum, G. and Reid, A. W., All finite groups are involved in the mapping class group , Geom. Topol. 16 (2012), 13931411.CrossRefGoogle Scholar
Masbaum, G. and Roberts, J. D., A simple proof of integrality of quantum invariants at prime roots of unity , Math. Proc. Cambridge Philos. Soc. 121 (1997), 443454.10.1017/S0305004196001624CrossRefGoogle Scholar
Morita, S., Casson’s invariant for homology 3-spheres and characteristic classes of surface bundles I , Topology 28 (1989), 305323.CrossRefGoogle Scholar
Morita, S., On the structure of the Torelli group and the Casson invariant , Topology 30 (1991), 603621.CrossRefGoogle Scholar
Morita, S., Structure of the mapping class groups of surfaces: a survey and a prospect, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geometry & Topology Monographs, vol. 2 (Mathematical Sciences Publishers, Coventry, 1999), 349–406.CrossRefGoogle Scholar
Morita, S., Sakasai, T. and Suzuki, M., Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie algebras , Adv. Math. 282 (2015), 291334.Google Scholar
Morita, S., Sakasai, T. and Suzuki, M., Torelli group, Johnson kernel, and invariants of homology spheres , Quantum Topol. 11 (2020), 379410.CrossRefGoogle Scholar
Murakami, H., Quantum ${\rm SO}(3)$ -invariants dominate the ${\rm SU}(2)$ -invariant of Casson and Walker, Math. Proc. Cambridge Philos. Soc. 117 (1995), 237249.CrossRefGoogle Scholar
Premet, A. A. and Suprunenko, I. D., The Weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights , Comm. Algebra 11 (1983), 13091342.CrossRefGoogle Scholar
Putman, A., Cutting and pasting in the Torelli group , Geom. Topol. 11 (2007), 829865.CrossRefGoogle Scholar
Reshetikhin, N. and Turaev, V. G., Invariants of 3-manifolds via link polynomials and quantum groups , Invent. Math. 103 (1991), 547597.Google Scholar
Roberts, J., Irreducibility of some quantum representations of mapping class groups , J. Knot Theory Ramifications 10 (2001), 763767.CrossRefGoogle Scholar
Witten, E., Quantum field theory and the Jones polynomial , Comm. Math. Phys. 121 (1989), 351399.10.1007/BF01217730CrossRefGoogle Scholar