We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie (Paris 6), Théorie des Nombres (Case 247), 4, place Jussieu, F-75252 Paris cedex 05, France (email: nekovar@math.jussieu.fr)
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove the parity conjecture for the ranks of p-power Selmer groups (p⁄=2) of a large class of elliptic curves defined over totally real number fields.
[1]Bertolini, M. and Darmon, H., Kolyvagin’s descent and Mordell–Weil groups over ring class fields, J. Reine Angew. Math.412 (1990), 63–74.Google Scholar
[2]
[2]Coates, J., Fukaya, T., Kato, K. and Sujatha, R., Root numbers, Selmer groups and non-commutative Iwasawa theory, J. Algebraic Geom., to appear.Google Scholar
[3]
[3]Cornut, C. and Vatsal, V., Nontriviality of Rankin–Selberg L-functions and CM points, in L-functions and Galois representations, Durham, July 2004, LMS Lecture Note Series, vol. 320 (Cambridge University Press, Cambridge, 2007), 121–186.Google Scholar
[4]
[4]Curtis, C. W. and Reiner, I., Methods of representation theory, Vol. I (Wiley, New York, 1981).Google Scholar
[5]
[5]Deligne, P. and Pappas, G., Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math.90 (1994), 59–79.Google Scholar
[6]
[6]Dokchitser, T. and Dokchitser, V., Parity of ranks for elliptic curves with a cyclic isogeny, J. Number Theory128 (2008), 662–679.Google Scholar
[10]Greenberg, R., Trivial zeros of p-adic L-functions, Contemp. Math.165 (1994), 149–173.Google Scholar
[11]
[11]Greenberg, R., Iwasawa theory, projective modules, and modular representations, Preprint.Google Scholar
[12]
[12]Harris, M., Shepherd-Barron, N. and Taylor, R., A family of Calabi–Yau varieties and potential automorphy, Preprint (2006). Available at http://www.math.harvard.edu/∼rtaylor/, Ann. of Math. (2), to appear.Google Scholar
[13]
[13]Jacquet, H. and Langlands, R. P., Automorphic forms on GL(2), Lecture Notes in Mathematics, vol. 114 (Springer, Berlin, 1970).Google Scholar
[14]
[14]Kim, B. D., The parity theorem of elliptic curves at primes with supersingular reduction, Compositio Math.143 (2007), 47–72.CrossRefGoogle Scholar
[15]
[15]Kim, B. D., The parity conjecture over totally real fields for elliptic curves at supersingular reduction primes, Preprint.Google Scholar
[16]
[16]Mazur, B. and Rubin, K., Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math. (2)166 (2007), 581–614.Google Scholar
[17]
[17]Mazur, B. and Rubin, K., Growth of Selmer rank in nonabelian extensions of number fields, Duke Math. J.143 (2008), 437–461.CrossRefGoogle Scholar
[18]
[18]Monsky, P., Generalizing the Birch–Stephens theorem. I. Modular curves, Math. Z.221 (1996), 415–420.Google Scholar
[19]
[19]Moret-Bailly, L., Groupes de Picard et problèmes de Skolem I, II, Ann. Sci. École Norm. Sup. (4)22 (1989), 161–179, 181–194Google Scholar
[20]
[20]Nekovář, J., On the parity of ranks of Selmer groups II, C. R. Acad. Sci. Paris, Sér. I Math.332 (2001), 99–104.CrossRefGoogle Scholar
[21]
[21]Nekovář, J., Selmer complexes, Astérisque, vol. 310 (Societé Mathématique de France, Paris, 2006).Google Scholar
[22]
[22]Nekovář, J., The Euler system method for CM points on Shimura curves, in L-functions and Galois representations, Durham, July 2004, LMS Lecture Note Series, vol. 320 (Cambridge Univesity Press, Cambridge, 2007), 471–547.Google Scholar
[23]
[23]Nekovář, J., Growth of Selmer groups of Hilbert modular forms over ring class fields, Ann. Sci. École Norm. Sup. (4)41 (2008), 1003–1022.Google Scholar
[24]
[24]Rapoport, M., Compactifications de l’espace de modules de Hilbert–Blumenthal, Compositio Math.36 (1978), 255–335.Google Scholar
[25]
[25]Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.15 (1972), 259–331.Google Scholar
[26]
[26]Serre, J.-P., Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Études Sci.54 (1981), 323–401.Google Scholar
[27]
[27]Skinner, C. M., Modularity of Galois representations, Les XXIIèmes Journées Arithmetiques (Lille, 2001), J. Théor. Nombres Bordeaux15 (2003), 367–381.Google Scholar
[28]
[28]Skinner, C. M. and Wiles, A., Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse Math. (6)10 (2001), 185–215.Google Scholar
[29]
[29]Taylor, R., On Galois representations associated to Hilbert modular forms, Invent. Math.98 (1989), 265–280.Google Scholar
[30]
[30]Taylor, R., Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu1 (2002), 1–19.CrossRefGoogle Scholar
[31]
[31]Taylor, R., On icosahedral Artin representations II, Amer. J. Math.125 (2003), 549–566.Google Scholar
[32]
[32]Wiles, A., On p-adic representations for totally real fields, Ann. of Math. (2)123 (1986), 407–456.Google Scholar
[33]
[33]Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2)141 (1995), 443–551.Google Scholar
[34]
[34]Zhang, S.-W., Heights of Heegner points on Shimura curves, Ann. of Math. (2)153 (2001), 27–147.Google Scholar