Skip to main content Accessibility help

Perfect complexes on algebraic stacks

  • Jack Hall (a1) and David Rydh (a2)


We develop a theory of unbounded derived categories of quasi-coherent sheaves on algebraic stacks. In particular, we show that these categories are compactly generated by perfect complexes for stacks that either have finite stabilizers or are local quotient stacks. We also extend Toën and Antieau–Gepner’s results on derived Azumaya algebras and compact generation of sheaves on linear categories from derived schemes to derived Deligne–Mumford stacks. These are all consequences of our main theorem: compact generation of a presheaf of triangulated categories on an algebraic stack is local for the quasi-finite flat topology.



Hide All
[AJPV17] Alonso Tarrío, L., Jeremías López, A., Pérez Rodríguez, M. and Vale Gonsalves, M. J., On the derived category of quasi-coherent sheaves on an Adams geometric stack , J. Pure Appl. Algebra (2017), doi:10.1016/j.jpaa.2017.05.009, to appear, available online.
[Alp13] Alper, J., Good moduli spaces for Artin stacks , Ann. Inst. Fourier (Grenoble) 63 (2013), 23492402.
[AHR15] Alper, J., Hall, J. and Rydh, D., A Luna étale slice theorem for algebraic stacks, Preprint (2015), arXiv:1504.06467.
[Ant14] Antieau, B., A local-global principle for the telescope conjecture , Adv. Math. 254 (2014), 280299.
[AG14] Antieau, B. and Gepner, D., Brauer groups and étale cohomology in derived algebraic geometry , Geom. Topol. 18 (2014), 11491244.
[Aus66] Auslander, M., Coherent functors , in Proc. conf. on categorical algebra (La Jolla, CA, 1965) (Springer, New York, 1966), 189231.
[Beh03] Behrend, K., Derived l-adic categories for algebraic stacks , Mem. Amer. Math. Soc. 163 (2003).
[BFN10] Ben-Zvi, D., Francis, J. and Nadler, D., Integral transforms and Drinfeld centers in derived algebraic geometry , J. Amer. Math. Soc. 23 (2010), 909966.
[BLS16] Bergh, D., Lunts, V. A. and Schnürer, O. M., Geometricity for derived categories of algebraic stacks , Selecta Math. (N.S.) 22 (2016), 25352568.
[BN93] Bökstedt, M. and Neeman, A., Homotopy limits in triangulated categories , Compos. Math. 86 (1993), 209234.
[BVdB03] Bondal, A. and Van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry , Mosc. Math. J. 3 (2003), 136; 258.
[Bra14] Brandenburg, M., Tensor categorical foundations of algebraic geometry, PhD thesis, Wilhelms-Universität Münster (2014), p. 243.
[Bri15] Brion, M., On linearization of line bundles , J. Math. Sci. Univ. Tokyo 22 (2015), 113147.
[CS16] Canonaco, A. and Stellari, P., Uniqueness of dg enhancements for the derived category of a Grothendieck category, J. Eur. Math. Soc. (2016), to appear.
[deJ03] de Jong, A. J., A result of Gabber, Preprint (2003), p. 9, available at∼dejong/.
[DG13] Drinfeld, V. and Gaitsgory, D., On some finiteness questions for algebraic stacks , Geom. Funct. Anal. 23 (2013), 149294.
[DM12] Dubey, U. V. and Mallick, V. M., Spectrum of some triangulated categories , J. Algebra 364 (2012), 90118.
[EGA] Grothendieck, A., Éléments de géométrie algébrique, Publ. Math. Inst. Hautes Études Sci. 4, 8, 11, 17, 20, 24, 28, 32 (1960, 1961, 1961, 1963, 1964, 1965, 1966, 1967).
[FL85] Fulton, W. and Lang, S., Riemann–Roch algebra, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 277 (Springer, New York, 1985).
[Gab81] Gabber, O., Some theorems on Azumaya algebras , in The Brauer group (séminaire, Les Plans-sur-Bex, 1980), Lecture Notes in Mathematics, vol. 844 (Springer, Berlin–New York, 1981), 129209.
[GR17] Gaitsgory, D. and Rozenblyum, N., A study in derived algebraic geometry: Volume I: correspondences and duality, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, Providence, RI, 2017).
[Gro10] Gross, P., Vector bundles as generators on schemes and stacks, PhD thesis, Heinrich-Heine-Universität Düsseldorf (2010).
[Gro17] Gross, P., Tensor generators on schemes and stacks , Algebr. Geom. 4 (2017), arXiv:1306.5418, to appear.
[Hal14] Hall, J., Cohomology and base change for algebraic stacks , Math. Z. 278 (2014), 401429.
[Hal16] Hall, J., The Balmer spectrum of a tame stack , Ann. K-Theory 1 (2016), 259274.
[Hal17] Hall, J., Openness of versality via coherent functors , J. reine angew. Math. 722 (2017), 137182.
[HNR14] Hall, J., Neeman, A. and Rydh, D., One positive and two negative results for derived categories of algebraic stacks, Preprint (2014), arXiv:1405.1888v2.
[HR15] Hall, J. and Rydh, D., Algebraic groups and compact generation of their derived categories of representations , Indiana Univ. Math. J. 64 (2015), 19031923.
[HR16] Hall, J. and Rydh, D., Mayer–Vietoris squares in algebraic geometry, Preprint (2016), arXiv:1606.08517.
[HR17] Hall, J. and Rydh, D., The telescope conjecture for algebraic stacks , J. Topol. 10 (2017), 776794.
[Har98] Hartshorne, R., Coherent functors , Adv. Math. 140 (1998), 4494.
[HPS97] Hovey, M., Palmieri, J. H. and Strickland, N. P., Axiomatic stable homotopy theory , Mem. Amer. Math. Soc. 128 (1997).
[KS06] Kashiwara, M. and Schapira, P., Categories and sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332 (Springer, Berlin, 2006).
[Kri09] Krishna, A., Perfect complexes on Deligne–Mumford stacks and applications , J. K-Theory 4 (2009), 559603.
[LO08] Laszlo, Y. and Olsson, M., The six operations for sheaves on Artin stacks. I. Finite coefficients , Publ. Math. Inst. Hautes Études Sci. 107 (2008), 109168.
[LM00] Laumon, G. and Moret-Bailly, L., Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 39 (Springer, Berlin, 2000).
[Lie04] Lieblich, M., Moduli of twisted sheaves and generalized Azumaya algebras, PhD thesis, Massachusetts Institute of Technology, ProQuest LLC, Ann Arbor, MI (2004).
[Lip09] Lipman, J., Notes on derived functors and Grothendieck duality , in Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Mathematics, vol. 1960 (Springer, Berlin, 2009), 1259.
[LN07] Lipman, J. and Neeman, A., Quasi-perfect scheme-maps and boundedness of the twisted inverse image functor , Illinois J. Math. 51 (2007), 209236.
[LZ12] Liu, Y. and Zheng, W., Enhanced six operations and base change theorem for Artin stacks, Preprint (2012), arXiv:1211.5948.
[Lur04] Lurie, J., Tannaka duality for geometric stacks, Preprint (2004), arXiv:math/0412266, p. 14.
[Lur09] Lurie, J., Higher topos theory, Annals of Mathematics Studies, vol. 170 (Princeton University Press, Princeton, NJ, 2009).
[Lur11a] Lurie, J., Derived algebraic geometry XI: descent theorems, Preprint (2011),∼lurie/.
[Lur11b] Lurie, J., Derived algebraic geometry XII: proper morphisms, completions, and the Grothendieck existence theorem, Preprint (2011),∼lurie/.
[Lur16a] Lurie, J., Higher algebra, Preprint (2016),∼lurie/.
[Lur16b] Lurie, J., Spectral algebraic geometry, Preprint (2016),∼lurie/.
[Mor96] Moret-Bailly, L., Un problème de descente , Bull. Soc. Math. France 124 (1996), 559585.
[Nee92a] Neeman, A., The chromatic tower for D (R) , Topology 31 (1992), 519532; with an appendix by Marcel Bökstedt.
[Nee92b] Neeman, A., The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 547566.
[Nee96] Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , J. Amer. Math. Soc. 9 (1996), 205236.
[Nee01a] Neeman, A., On the derived category of sheaves on a manifold , Doc. Math. 6 (2001), 483488; (electronic).
[Nee01b] Neeman, A., Triangulated categories, Annals of Mathematics Studies, vol. 148 (Princeton University Press, Princeton, NJ, 2001).
[Nee11] Neeman, A., Non-left-complete derived categories , Math. Res. Lett. 18 (2011), 827832.
[Nee14] Neeman, A., An improvement on the base-change theorem and the functor $f^{!}$ , Preprint (2014), arXiv:1406.7599.
[Ols07] Olsson, M., Sheaves on Artin stacks , J. reine angew. Math. 603 (2007), 55112.
[Ryd11] Rydh, D., Étale dévissage, descent and pushouts of stacks , J. Algebra 331 (2011), 194223.
[Ryd15] Rydh, D., Noetherian approximation of algebraic spaces and stacks , J. Algebra 422 (2015), 105147.
[SGA6] Berthelot, P., Grothendieck, A. and Illusie, L. (eds), Théorie des intersections et théorème de Riemann–Roch , inSéminaire de géométrie algébrique du Bois-Marie 1966–1967 (SGA 6), Lecture Notes in Mathematics, vol. 225 (Springer, Berlin, 1971); with the collaboration of D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud, and J. P. Serre.
[Sta] The Stacks Project Authors, Stacks project,
[Sum74] Sumihiro, H., Equivariant completion , J. Math. Kyoto Univ. 14 (1974), 128.
[Sum75] Sumihiro, H., Equivariant completion. II , J. Math. Kyoto Univ. 15 (1975), 573605.
[Tho87] Thomason, R. W., Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes , Adv. Math. 65 (1987), 1634.
[Tho97] Thomason, R. W., The classification of triangulated subcategories , Compos. Math. 105 (1997), 127.
[TT90] Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories , in The Grothendieck festschrift, Vol. III, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, MA, 1990), 247435.
[Toë12] Toën, B., Derived Azumaya algebras and generators for twisted derived categories , Invent. Math. 189 (2012), 581652.
[TV08] Toën, B. and Vezzosi, G., Homotopical algebraic geometry. II. Geometric stacks and applications , Mem. Amer. Math. Soc. 193 (2008).
[Tot04] Totaro, B., The resolution property for schemes and stacks , J. reine angew. Math. 577 (2004), 122.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed