Skip to main content
×
×
Home

Periods of automorphic forms: the case of $(\text{GL}_{n+1}\times \text{GL}_{n},\text{GL}_{n})$

  • Atsushi Ichino (a1) and Shunsuke Yamana (a2)
Abstract

Following Jacquet, Lapid and Rogawski, we define a regularized period of an automorphic form on $\text{GL}_{n+1}\times \text{GL}_{n}$ along the diagonal subgroup $\text{GL}_{n}$ and express it in terms of the Rankin–Selberg integral of Jacquet, Piatetski-Shapiro and Shalika. This extends the theory of Rankin–Selberg integrals to all automorphic forms on $\text{GL}_{n+1}\times \text{GL}_{n}$ .

Copyright
References
Hide All
[Art78]Arthur, J., A trace formula for reductive groups I: terms associated to classes in G (ℚ), Duke Math. J. 45 (1978), 911952.
[Art80]Arthur, J., A trace formula for reductive groups II: applications of a truncation operator, Compositio Math. 40 (1980), 87121.
[Art81]Arthur, J., The trace formula in invariant form, Ann. of Math. (2) 114 (1981), 174.
[Art82]Arthur, J., On the inner product of truncated Eisenstein series, Duke Math. J. 49 (1982), 3570.
[Art85]Arthur, J., A measure on the unipotent variety, Canad. J. Math. 37 (1985), 12371274.
[Ber84]Bernstein, J., P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-archimedean case), in Lie group representations II, Lecture Notes in Mathematics, vol. 1041 (Springer, Berlin, 1984), 50102.
[Cas93]Casselman, W., Extended automorphic forms on the upper half plane, Math. Ann. 296 (1993), 755762.
[CP04]Cogdell, J. W. and Piatetski-Shapiro, I. I., Remarks on Rankin-Selberg convolution, in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, 2004), 256278.
[DM78]Dixmier, J. and Malliavin, P., Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. 102 (1978), 307330.
[Fra98]Franke, J., Harmonic analysis in weighted L 2-spaces, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 181279.
[GGP12]Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1109.
[GP92]Gross, B. H. and Prasad, D., On the decomposition of a representation of SOn when restricted to SOn−1, Canad. J. Math. 44 (1992), 9741002.
[Har66]Harish-Chandra, Discrete series for semi-simple Lie groups II, Acta Math. 116 (1966), 1111.
[II10]Ichino, A. and Ikeda, T., On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), 13781425.
[Jac84]Jacquet, H., On the residual spectrum of GL(n), in Lie group representations II, Lecture Notes in Mathematics, vol. 1041 (Springer, Berlin, 1984), 185208.
[Jac04]Jacquet, H., Integral representation of Whittaker functions, in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, 2004), 373419.
[Jac09]Jacquet, H., Archimedean Rankin-Selberg integrals, in Automorphic forms and L-functions II: local aspects, Contemporary Mathematics, vol. 489 (American Mathematical Society, Providence, RI, 2009), 57172.
[JC01]Jacquet, H. and Chen, N., Positivity of quadratic base change L-functions, Bull. Soc. Math. France 129 (2001), 3390.
[JLR99]Jacquet, H., Lapid, E. and Rogawski, J., Periods of automorphic forms, J. Amer. Math. Soc. 12 (1999), 173240.
[JPS79]Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J., Automorphic forms on GL(3), I & II, Ann. of Math. (2) 109 (1979), 169258.
[JPS83]Jacquet, H., Piatetski-Shapiro, I. I. and Shalika, J., Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367464.
[JR11]Jacquet, H. and Rallis, S., On the Gross-Prasad conjecture for unitary groups, in On certainL-functions, Clay Mathematics Proceedings, vol. 13 (American Mathematical Society, Providence, RI, 2011), 205264.
[JS90]Jacquet, H. and Shalika, J., Rankin-Selberg convolutions: Archimedean theory, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part I (Ramat Aviv, 1989), Israel Mathematical Conference Proceedings, vol. 2 (Weizmann, Jerusalem, 1990), 125207.
[Lap11]Lapid, E., On Arthur’s asymptotic inner product formula of truncated Eisenstein series, in On certain L-functions, Clay Mathematics Proceedings, vol. 13 (American Mathematical Society, Providence, RI, 2011), 309331.
[LR03]Lapid, E. and Rogawski, J., Periods of Eisenstein series: the Galois case, Duke Math. J. 120 (2003), 153226.
[MW89]Moeglin, C. and Waldspurger, J.-L., Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), 605674.
[MW95]Moeglin, C. and Waldspurger, J.-L., Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113 (Cambridge University Press, Cambridge, 1995).
[Sha74]Shalika, J., The multiplicity one theorem for GLn, Ann. of Math. (2) 100 (1974), 171193.
[Trè06]Trèves, F., Topological vector spaces, distributions and kernels (Dover, Mineola, NY, 2006). Unabridged republication of the 1967 original.
[Vog86]Vogan, D., The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), 449505.
[Wal97]Waldspurger, J.-L., Cohomologie des espaces de formes automorphes (d’après J. Franke), Astérisque 241 (1997), 139156; Séminaire Bourbaki, 1995/96, exp. no. 809.
[Wal92]Wallach, N., Real reductive groups II, Pure and Applied Mathematics, vol. 132-II (Academic Press, Boston, 1992).
[Zha14a]Zhang, W., Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. of Math. (2) 180 (2014), 9711049.
[Zha14b]Zhang, W., Automorphic period and the central value of Rankin-Selberg L-function, J. Amer. Math. Soc. 27 (2014), 541612.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed