Skip to main content Accessibility help

Pseudoholomorphic tori in the Kodaira–Thurston manifold

  • Jonathan David Evans (a1) and Jarek Kędra (a2) (a3)


The Kodaira–Thurston manifold is a quotient of a nilpotent Lie group by a cocompact lattice. We compute the family Gromov–Witten invariants which count pseudoholomorphic tori in the Kodaira–Thurston manifold. For a fixed symplectic form the Gromov–Witten invariant is trivial so we consider the twistor family of left-invariant symplectic forms which are orthogonal for some fixed metric on the Lie algebra. This family defines a loop in the space of symplectic forms. This is the first example of a genus one family Gromov–Witten computation for a non-Kähler manifold.



Hide All
[BG88]Benson, C. and Gordon, C. S., Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513518.
[BCOV93]Bershadsky, M., Cecotti, S., Ooguri, H. and Vafa, C., Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993), 279304 (with an appendix by S. Katz).
[BL00]Bryan, J. and Leung, N. C., The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc. 13 (2000), 371410.
[Bus05]Buse, O., Relative family Gromov–Witten invariants and symplectomorphisms, Pacific J. Math. 218 (2005), 315342.
[CdlOGP91]Candelas, P., de la Ossa, X. C., Green, P. S. and Parkes, L., A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 2174.
[CFdL85]Cordero, L. A., Fernandez, M. and de Leon, M., Examples of compact non-Kähler almost Kähler manifolds, Proc. Amer. Math. Soc. 95 (1985), 280296.
[Dic52]Dickson, L. E., History of the theory of numbers. Volume I: divisibility and primality, Carnegie Institute of Washington, Publication No. 256, vol. I (Chelsea Publishing Company, New York, 1952).
[GT01]Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order, Grundlehren der mathematischen Wissenschaften, vol. 224 (Springer, 2001).
[Gro85]Gromov, M., Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307347.
[Gro97]Gromov, M., Response to steele prize for a seminal contribution to research, Notices Amer. Math. Soc. 44 (1997), 342345.
[Kęd04]Kędra, J., Restrictions on symplectic fibrations, Differential Geom. Appl. 21 (2004), 93112 (with an appendix ‘Simple examples of nontrivial Gromov–Witten invariants’ written jointly with Kaoru Ono).
[Kle76]Kleiman, S. L., Problem 15: Rigorous foundation of Schubert’s enumerative calculus, in Mathematical developments arising from Hilbert problems, Proceedings and Symposia in Pure Mathematics, vol. XXVIII (American Mathematical Society, Providence, RI, 1976), 445482.
[KMPS10]Klemm, A., Maulik, D., Pandharipande, R. and Scheidegger, E., Noether–Lefschetz theory and the Yau–Zaslow conjecture, J. Amer. Math. Soc. 23 (2010), 10131040.
[LO08], H. V. and Ono, K., Parameterized Gromov–Witten invariants and topology of symplectomorphism groups, Adv. Stud. Pure Math. 52 (2008), 5175.
[Lee04]Lee, J., Family Gromov–Witten invariants for Kähler surfaces, Duke Math. J. 123 (2004), 209233.
[Lee06]Lee, J., Counting curves in elliptic surfaces by symplectic methods, Comm. Anal. Geom. 14 (2006), 107134.
[LL05]Lee, J. and Leung, N. C., Yau–Zaslow formula on K3 surfaces for non-primitive classes, Geom. Topol. 9 (2005), 19772012.
[LP05]Lee, J. and Parker, T., Symplectic gluing and family Gromov–Witten invariants, in Geometry and topology of manifolds, Fields Institute Communications, vol. 47 (American Mathematical Society, Providence, RI, 2005), 147172.
[Lu98]Lu, P., A rigorous definition of fiberwise quantum cohomology and equivariant quantum cohomology, Comm. Anal. Geom. 6 (1998), 511588.
[MP07]Maulik, D. and Pandharipande, R., Gromov–Witten theory and Noether–Lefschetz theory, in A celebration of algebraic geometry, Clay Mathematics Proceedings, vol. 18 (American Mathematical Society, Providence, RI, 2013), 469507.
[MS04]McDuff, D. and Salamon, D., J-holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, vol. 52 (American Mathematical Society, Providence, RI, 2004).
[RT95]Ruan, Y. and Tian, G., A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), 259367.
[RT97]Ruan, Y. and Tian, G., Higher genus symplectic invariants and sigma models coupled with gravity, Invent. Math. 130 (1997), 455516.
[Sei99]Seidel, P., On the group of symplectic automorphisms of CPm ×CPn, Amer. Math. Soc. Transl. Ser. 2 196 (1999), 237250.
[Thu76]Thurston, W., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467468.
[VGS00]Vinberg, E. B., Gorbatsevich, V. V. and Shvartsman, O. V., Discrete subgroups of Lie groups, in Lie groups and Lie algebras II, Encyclopædia of Mathematical Sciences, vol. 21 (Springer, 2000).
[Wit88]Witten, E., Topological sigma models, Comm. Math. Phys. 118 (1988), 411449.
[Zin09]Zinger, A., The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009), 691737.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Pseudoholomorphic tori in the Kodaira–Thurston manifold

  • Jonathan David Evans (a1) and Jarek Kędra (a2) (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed