Skip to main content
×
Home
    • Aa
    • Aa

Quasi-invariants of complex reflection groups

  • Yuri Berest (a1) and Oleg Chalykh (a2)
Abstract
Abstract

We introduce quasi-invariant polynomials for an arbitrary finite complex reflection group W. Unlike in the Coxeter case, the space of quasi-invariants of a given multiplicity is not, in general, an algebra but a module Qk over the coordinate ring of a (singular) affine variety Xk. We extend the main results of Berest et al. [Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), 279–337] to this setting: in particular, we show that the variety Xk and the module Qk are Cohen–Macaulay, and the rings of differential operators on Xk and Qk are simple rings, Morita equivalent to the Weyl algebra An(ℂ) , where n=dim Xk. Our approach relies on representation theory of complex Cherednik algebras introduced by Dunkl and Opdam [Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), 70–108] and is parallel to that of Berest et al. As an application, we prove the existence of shift operators for an arbitrary complex reflection group, confirming a conjecture of Dunkl and Opdam. Another result is a proof of a conjecture of Opdam, concerning certain operations (KZ twists) on the set of irreducible representations of W.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quasi-invariants of complex reflection groups
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Quasi-invariants of complex reflection groups
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Quasi-invariants of complex reflection groups
      Available formats
      ×
Copyright
References
Hide All
[1]Bandlow J. and Musiker G., A new characterization for the m-quasi-invariants of S n and explicit basis for two row hook shapes, J. Combin. Theory Ser. A 115 (2008), 13331357.
[2]Ben-Zvi D. and Nevins T., Cusps and 𝒟-modules, J. Amer. Math. Soc. 17 (2004), 155179.
[3]Berest Yu., The problem of lacunas and analysis on root systems, Trans. Amer. Math. Soc. 352 (2000), 37433776.
[4]Berest Yu., Etingof P. and Ginzburg V., Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), 279337.
[5]Berest Yu. and Wilson G., Differential isomorphism and equivalence of algebraic verieties, in Topology, geometry and quantum field theory, London Mathematical Society Lecture Note Series, vol. 308 (Cambridge University Press, Cambridge, 2004), 98126.
[6]Bourbaki N., Groupes et algèbres de Lie (Hermann, Paris, 1968), chs. IV, V et VI.
[7]Broué M., Malle G. and Rouquier R., Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127190.
[8]Chalykh O., Feigin M. and Veselov A., Multidimensional Baker–Akhiezer functions and Huygens’ principle, Comm. Math. Phys. 206 (1999), 533566.
[9]Chalykh O. A. and Veselov A. P., Commutative rings of partial differential operators and Lie algebras, Comm. Math. Phys. 126 (1990), 597611.
[10]Cherednik I., Lectures on Knizhnik–Zamolodchikov equations and Hecke algebras, Math. Soc. Jap. Mem. 1 (1998), 196.
[11]Chevalley C., Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778882.
[12]Cohen A. M., Finite complex reflection groups, Ann. Sci. École Norm. Sup. 9 (1976), 379436.
[13]Dunkl C. F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), 167183.
[14]Dunkl C. F., Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 12131227.
[15]Dunkl C. F., De Jeu M. F. E. and Opdam E. M., Singular polynomials for finite reflection groups, Trans. Amer. Math. Soc. 346 (1994), 237256.
[16]Dunkl C. F. and Opdam E. M., Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), 70108.
[17]Etingof P. and Ginzburg V., Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243348.
[18]Etingof P. and Ginzburg V., On m-quasi-invariants of a Coxeter group, Mosc. Math. J. 2 (2002), 555566.
[19]Feigin M. and Veselov A. P., Quasi-invariants of Coxeter groups and m-harmonic polynomials, Int. Math. Res. Not. 10 (2002), 521545.
[20]Felder G. and Veselov A. P., Action of Coxeter groups on m-harmonic polynomials and KZ equations, Mosc. Math. J. 3 (2003), 12691291.
[21]Garsia A. M. and Wallach N., Some new applications of orbit harmonics, Sém. Lothar. Combin. 50 (2003/04), 47 pp. (electronic).
[22]Garsia A. M. and Wallach N., The non-degeneracy of the bilinear form of m-quasi-invariants, Adv. Appl. Math. 37 (2006), 309359.
[23]Ginzburg V., On primitive ideals, Selecta Math. (New series) 9 (2003), 379407.
[24]Ginzburg V., Guay N., Opdam E. and Rouquier R., On the category 𝒪 for rational Cherednik algebras, Invent. Math. 154 (2003), 617651.
[25]Gordon I., On the quotient ring by diagonal invariants, Invent. Math. 153 (2003), 503518.
[26]Gordon I. and Stafford J. T., Rational Cherednik algebras and Hilbert schemes, Adv. Math. 198 (2005), 222274.
[27]Grothendieck A., Eléments de geometrie algébrique IV, Publ. Math. Inst. Hautes. Études Sci. 32 (1967), Paris.
[28]Heckman G. J., A remark on the Dunkl differential-difference operators, in Harmonic analysis on reductive groups, Progress in Mathematics, vol. 101 (Birkhäuser, Boston, 1991), 181191.
[29]Joseph A., The Enright functor on the Bernstein–Gelfand–Gelfand category 𝒪, Invent. Math. 67 (1982), 423445.
[30]Knop F., Graded cofinite rings of differential operators, Michigan Math. J. 54 (2006), 323.
[31]Kohno T., Integrable connections related to Manin and Schechtman’s higher braid groups, Illinois J. Math. 34 (1990), 476484.
[32]McConnell J. C. and Robson J. C., Noncommutative Noetherian rings (John Wiley & Sons, New York, 1987).
[33]Montgomery S., Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Mathematics, vol. 818 (Springer, Berlin, 1980).
[34]Opdam E. M., Complex reflection groups and fake degrees, Preprint, arXiv:math.RT/9808026.
[35]Opdam E. M., Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), 333373.
[36]Opdam E. M., A remark on the irreducible characters and fake degrees of finite real reflection groups, Invent. Math. 120 (1995), 447454.
[37]Opdam E. M., Lecture notes on dunkl operators for real and complex reflection groups. With a preface by Toshio Oshima, MSJ Memoirs, vol. 8 (Mathematical Society of Japan, Tokyo, 2000).
[38]Rouquier R., q-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), 119158.
[39]Shephard G. C. and Todd J. A., Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274304.
[40]Smith S. P. and Stafford J. T., Differential operators on an affine curve, Proc. London Math. Soc. 56 (1988), 229259.
[41]Stafford J. T. and Van den Bergh M., On quasi-invariants of complex reflection groups, Private notes (2004).
[42]Steinberg R., Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392400.
[43]Vale R., On category 𝒪 for the rational Cherednik algebra of the complex reflection group (ℤ/ℤ)≀S n, PhD thesis, University of Glasgow (2006).
[44]Van den Bergh M., Invariant differential operators on semi-invariants for Tori and weighted projective space, Lecture Notes in Mathematics, vol. 1478 (Springer, New-York, 1991), 255272.
[45]Veselov A. P., Styrkas K. L. and Chalykh O. A., Algebraic integrability for the Schrödinger equation and finite reflection groups, Theoret. Math. Phys. 94 (1993), 253275.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 102 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.