Skip to main content
×
×
Home

Rank 3 rigid representations of projective fundamental groups

  • Adrian Langer (a1) and Carlos Simpson (a2)
Abstract

Let $X$ be a smooth complex projective variety with basepoint $x$ . We prove that every rigid integral irreducible representation $\unicode[STIX]{x1D70B}_{1}(X\!,x)\rightarrow \operatorname{SL}(3,\mathbb{C})$ is of geometric origin, i.e., it comes from some family of smooth projective varieties. This partially generalizes an earlier result by Corlette and the second author in the rank 2 case and answers one of their questions.

Copyright
References
Hide All
[Bas80] Bass, H., Groups of integral representation type , Pacific J. Math. 86 (1980), 1551.
[Bea92] Beauville, A., Annulation du H 1 pour les fibrés en droites plats , in Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Mathematics, vol. 1507 (Springer, Berlin, 1992), 115.
[BN06] Behrend, K. and Noohi, B., Uniformization of Deligne–Mumford curves , J. Reine Angew. Math. 599 (2006), 111153.
[Bha12] Bhatt, B., Annihilating the cohomology of group schemes , Algebra Number Theory 6 (2012), 15611577.
[Bog78] Bogomolov, F. A., Holomorphic tensors and vector bundles on projective manifolds , Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 12271287; 1439.
[Bor91] Borel, A., Linear algebraic groups, Graduate Texts in Mathematics, vol. 126, second edition (Springer, New York, 1991).
[CD17] Catanese, F. and Dettweiler, M., Answer to a question by Fujita on variation of Hodge structures , in Higher Dimensional Algebraic Geometry: In Honor of Professor Yujiro Kawamata’s 60th Birthday, Advanced Studies in Pure Mathematics, vol. 74 (Kinokuniya, Tokyo, 2017), 73102.
[CS08] Corlette, K. and Simpson, C., On the classification of rank-two representations of quasiprojective fundamental groups , Compos. Math. 144 (2008), 12711331.
[Cou15] Cousin, G., Projective representations of fundamental groups of quasiprojective varieties: a realization and a lifting result , C. R. Math. Acad. Sci. Paris 353 (2015), 155159.
[Deb05] Debarre, O., Complex tori and abelian varieties, SMF/AMS Texts and Monographs, vol. 11 (American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2005).
[Del71] Deligne, P., Travaux de Shimura , in Séminaire N. Bourbaki (1970/71), exp. 389, Lecture Notes in Mathematics, vol. 244 (Springer, Berlin, 1971), 123165.
[dJo01] de Jong, A. J., A conjecture on arithmetic fundamental groups , Israel J. Math. 121 (2001), 6184.
[EG17] Esnault, H. and Groechenig, M., Cohomologically rigid connections and integrality, Selecta Math. (N.S.), to appear. Preprint (2017), arXiv:1711.06436.
[EV92] Esnault, H. and Viehweg, E., Lectures on vanishing theorems, DMV Seminar, vol. 20 (Birkhäuser, Basel, 1992).
[Fuj78] Fujita, T., The sheaf of relative canonical forms of a Kähler fiber space over a curve , Proc. Japan Acad. Ser. A 54 (1978), 183184.
[GL91] Green, M. and Lazarsfeld, R., Higher obstructions to deforming cohomology groups of line bundles , J. Amer. Math. Soc. 4 (1991), 87103.
[GS92] Gromov, M. and Schoen, R., Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one , Publ. Math. Inst. Hautes Études Sci. 76 (1992), 165246.
[HL85] Hamm, H. A. and , D. T., Lefschetz theorems on quasiprojective varieties , Bull. Soc. Math. France 113 (1985), 123142.
[IS07] Iyer, J. N. N. and Simpson, C. T., A relation between the parabolic Chern characters of the de Rham bundles , Math. Ann. 338 (2007), 347383.
[Kaz96] Katz, N. M., Rigid local systems, Annals of Mathematics Studies, vol. 139 (Princeton University Press, Princeton, NJ, 1996).
[Kaz01] Katz, N. M., L-functions and monodromy: four lectures on Weil II , Adv. Math. 160 (2001), 81132.
[Kli03] Klingler, B., Sur la rigidité de certains groupes fondamentaux, l’arithméticité des réseaux hyperboliques complexes, et les “faux plans projectifs” , Invent. Math. 153 (2003), 105143.
[Kli13] Klingler, B., Symmetric differentials, Kähler groups and ball quotients , Invent. Math. 192 (2013), 257286.
[Lan02] Langer, A., A note on Bogomolov’s instability and Higgs sheaves , in Algebraic geometry: a volume in memory of Paolo Francia, eds Beltrametti, M. et al. (Walter de Gruyter, Berlin, 2002), 237256.
[Lan15] Langer, A., Bogomolov’s inequality for Higgs sheaves in positive characteristic , Invent. Math. 199 (2015), 889920.
[Lan16] Langer, A., The Bogomolov–Miyaoka–Yau inequality for logarithmic surfaces in positive characteristic , Duke Math. J. 165 (2016), 27372769.
[Laz04] Lazarsfeld, R., Positivity in algebraic geometry. I. Classical setting: line bundles and linear series , Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 48 (Springer, Berlin, 2004).
[Moc06] Mochizuki, T., Kobayashi–Hitchin correspondence for tame harmonic bundles and an application , Astérisque 309 (2006).
[Moc09] Mochizuki, T., Kobayashi-Hitchin correspondence for tame harmonic bundles. II , Geom. Topol. 13 (2009), 359455.
[Nor83] Nori, M. V., Zariski’s conjecture and related problems , Ann. Sci. Éc. Norm. Supér. (4) 16 (1983), 305344.
[Sim92] Simpson, C. T., Higgs bundles and local systems , Publ. Math. Inst. Hautes Études Sci. 75 (1992), 595.
[Sim93a] Simpson, C. T., Lefschetz theorems for the integral leaves of a holomorphic one-form , Compos. Math. 87 (1993), 99113.
[Sim93b] Simpson, C. T., Subspaces of moduli spaces of rank one local systems , Ann. Sci. Éc. Norm. Supér. (4) 26 (1993), 361401.
[Tot00] Totaro, B., The topology of smooth divisors and the arithmetic of abelian varieties , Michigan Math. J. 48 (2000), 611624.
[Tot07] Totaro, B., Euler and algebraic geometry , Bull. Amer. Math. Soc. 44 (2007), 541559.
[Wei62] Weil, A., Discrete subgroups of Lie groups, II , Annals of Math. 75 (1962), 97123.
[Xia91] Xiao, G., 𝜋1 of elliptic and hyperelliptic surfaces , Internat. J. Math. 2 (1991), 599615.
[Zuo99] Zuo, K., Representations of fundamental groups of algebraic varieties, Lecture Notes in Mathematics, vol. 1708 (Springer, Berlin, 1999).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed