Skip to main content
×
×
Home

Relations in the Sarkisov program

  • Anne-Sophie Kaloghiros (a1)
Abstract
Abstract

The Sarkisov program studies birational maps between varieties that are end products of the Minimal Model Program (MMP) on nonsingular uniruled varieties. If $X$ and $Y$ are terminal $ \mathbb{Q} $ -factorial projective varieties endowed with a structure of Mori fibre space, a birational map $f: X\dashrightarrow Y$ is the composition of a finite number of elementary Sarkisov links. This decomposition is in general not unique: two such define a relation in the Sarkisov program. I define elementary relations, and show they generate relations in the Sarkisov program. Roughly speaking, elementary relations are the relations among the end products of suitable relative MMPs of $Z$ over $W$ with $\rho (Z/ W)= 3$ .

Copyright
References
Hide All
[BCHM10]Birkar C., Cascini P., Hacon C. D. and McKernan J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405468.
[CL12]Cascini P. and Lazić V., New outlook on the minimal model program, I, Duke Math. J. 161 (2012), 24152467; math.AG/1009.3188.
[Cor95]Corti A., Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995), 223254; MR 1311348 (96c:14013).
[Ein+06]Ein L., Lazarsfeld R., Mustaţă M., Nakamaye M. and Popa M., Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 17011734.
[Grü67]Grünbaum B., Convex polytopes, Pure and Applied Mathematics, vol. 16 (John Wiley & Sons, New York, NY, 1967).
[HM13]Hacon C. D. and McKernan J., The Sarkisov program, J. Algebraic Geom. 22 (2013), 389405.
[KKL13]Kaloghiros A.-S., Küronya A. and Lazić V., Minimal models and extremal rays, Advanced Studies in Pure Mathematics (Mathematical Society of Japan, Tokyo, 2013).
[KK11]Kapovich M. and Kollár J., Fundamental groups and links of isolated singularities, Preprint (2011), math.AG/1109:4047.
[Kaw08]Kawamata Y., Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), 419423.
[Kol92]Kollár J., Flips and abundance for algebraic threefolds, Astérisque 211 (Société Mathématique de France, Paris, 1992).
[Laz04]Lazarsfeld R., Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 49 (Springer, Berlin, 2004).
[MM81]Mori S. and Mukai S., Classification of Fano 3-folds with ${B}_{2} \geq 2$, Manuscripta Math. 36 (1981), 147162.
[MM86]Mori S. and Mukai S., Classification of Fano 3-folds with ${B}_{2} \geq 2$. I, in Algebraic and topological theories, Kinosaki, 1984 (Kinokuniya, Tokyo, 1986), 496545.
[SC11]Shokurov V. and Choi S. R., Geography of log models: theory and applications, Cent. Eur. J. Math. 9 (2011), 489534.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 167 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd February 2018. This data will be updated every 24 hours.