Skip to main content Accessibility help
×
Home

Relative Calabi–Yau structures

  • Christopher Brav (a1) and Tobias Dyckerhoff (a2)

Abstract

We introduce relative noncommutative Calabi–Yau structures defined on functors of differential graded categories. Examples arise in various contexts such as topology, algebraic geometry, and representation theory. Our main result is a composition law for Calabi–Yau cospans generalizing the classical composition of cobordisms of oriented manifolds. As an application, we construct Calabi–Yau structures on topological Fukaya categories of framed punctured Riemann surfaces.

Copyright

References

Hide All
[AL17] Anno, R. and Logvinenko, T., Spherical DG-functors , J. Eur. Math. Soc. (JEMS) 19 (2017), 25772656.
[BD18] Brav, C. and Dyckerhoff, T., Relative Calabi–Yau structures II: Shifted Lagrangians in the moduli of objects, Preprint (2018), arXiv:1812.11913.
[Cal15] Calaque, D., Lagrangian structures on mapping stacks and semi-classical TFTs , in Stacks and categories in geometry, topology, and algebra, Contemporary Mathematics, vol. 643 (American Mathematical Society, Providence, RI, 2015), 123.
[CG15] Cohen, R. and Ganatra, S., Calabi–Yau categories, string topology, and Floer field theory, Preprint (2015), http://palmer.wellesley.edu/∼ivolic/pdf/DubrovnikConference/TalkSlides/Cohen.pdf.
[DK18] Dyckerhoff, T. and Kapranov, M., Triangulated surfaces in triangulated categories , J. Eur. Math. Soc. (JEMS) 20 (2018), 14731524.
[DK15] Dyckerhoff, T. and Kapranov, M., Crossed simplicial groups and structured surfaces , in Stacks and categories in geometry, topology, and algebra, Contemporary Mathematics, vol. 643 (American Mathematical Society, Providence, RI, 2015), 37110.
[Dyc17] Dyckerhoff, T., A1 -homotopy invariants of topological Fukaya categories of surfaces , Compositio Math. 153 (2017), 16731705.
[GR17] Gaitsgory, D. and Rozenblyum, N., A study in derived algebraic geometry, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, Providence, RI, 2017).
[GPS15] Ganatra, S., Perutz, T. and Sheridan, N., Mirror symmetry: from categories to curve counts, Preprint (2015), arXiv:1510.03839.
[Gin06] Ginzburg, V., Calabi-Yau algebras, Preprint (2006), arXiv:math/0612139.
[Hov99] Hovey, M., Model categories, Mathematical Surveys and Monographs, vol. 63 (American Mathematical Society, Providence, RI, 1999).
[Hoy15] Hoyois, M., The fixed points of the circle action on Hochschild homology, Preprint (2015), arXiv:1506.07123.
[Jon87] Jones, J. D. S., Cyclic homology and equivariant homology , Invent. Math. 87 (1987), 403423.
[Kas87] Kassel, C., Cyclic homology, comodules, and mixed complexes , J. Algebra 107 (1987), 195216.
[KVdB11] Keller, B. and Van den Bergh, M., Deformed Calabi–Yau completions , J. Reine Angew. Math. 2011 (2011), 125180.
[Kel82] Kelly, G. M., Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, vol. 64 (Cambridge University Press, Cambridge, 1982).
[Kon09] Kontsevich, M., Symplectic geometry of homological algebra, Preprint (2009), http://www.ihes.fr/∼maxim/TEXTS/Symplectic_AT2009.pdf.
[KS06] Kontsevich, M. and Soibelman, Y., Notes on A-infinity algebras, A-infinity categories and non-commutative geometry I, Preprint (2006), arXiv:math.RA/0606241.
[KV13] Kontsevich, M. and Vlassopoulos, Y., Weak Calabi-Yau algebras (2013), notes for a talk, https://math.berkeley.edu/∼auroux/miami2013.html.
[Lod13] Loday, J.-L., Cyclic homology, Grundlehren der mathematischen Wissenschaften, vol. 301 (Springer, 2013).
[Lur09a] Lurie, J., Higher topos theory, Annals of Mathematics Studies, vol. 170 (Princeton University Press, Princeton, NJ, 2009).
[Lur09b] Lurie, J., On the classification of topological field theories, Preprint (2009), arXiv:math/0905.0465.
[Lur11a] Lurie, J., Algebraic L-theory and surgery, lecture notes (2011), http://www.math.harvard.edu/∼lurie/287x.html.
[Lur11b] Lurie, J., Higher Algebra, Preprint (May 2011), http://www.math.harvard.edu/∼lurie/papers/HA.pdf.
[PTVV13] Pantev, T., Toën, B., Vaquié, M. and Vezzosi, G., Shifted symplectic structures , Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271328.
[Sei08] Seidel, P., Fukaya categories and Picard-Lefschetz theory (European Mathematical Society, 2008).
[Sei12] Seidel, P., Fukaya A -structures associated to Lefschetz fibrations. I , J. Symplectic Geom. 10 (2012), 325388.
[ST16] Shende, V. and Takeda, A., Symplectic structures from topological Fukaya categories, Preprint (2016), arXiv:1605.02721.
[Tab09] Tabuada, G., Non-commutative André–Quillen cohomology for differential graded categories , J. Algebra 321 (2009), 29262942.
[TT90] Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories , in The Grothendieck Festschrift, Vol. III, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, MA, 1990), 247435.
[Toë07] Toën, B., The homotopy theory of dg-categories and derived Morita theory , Invent. Math. 167 (2007), 615667.
[Toë14] Toën, B., Derived algebraic geometry, Preprint (2014), arXiv:1401.1044.
[TV07] Toën, B. and Vaquié, M., Moduli of objects in dg-categories , Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 387444.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Relative Calabi–Yau structures

  • Christopher Brav (a1) and Tobias Dyckerhoff (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed