Skip to main content Accessibility help

Rigidity of free product von Neumann algebras

  • Cyril Houdayer (a1) and Yoshimichi Ueda (a2)


Let $I$ be any nonempty set and let $(M_{i},\unicode[STIX]{x1D711}_{i})_{i\in I}$ be any family of nonamenable factors, endowed with arbitrary faithful normal states, that belong to a large class ${\mathcal{C}}_{\text{anti}\text{-}\text{free}}$ of (possibly type $\text{III}$ ) von Neumann algebras including all nonprime factors, all nonfull factors and all factors possessing Cartan subalgebras. For the free product $(M,\unicode[STIX]{x1D711})=\ast _{i\in I}(M_{i},\unicode[STIX]{x1D711}_{i})$ , we show that the free product von Neumann algebra $M$ retains the cardinality $|I|$ and each nonamenable factor $M_{i}$ up to stably inner conjugacy, after permutation of the indices. Our main theorem unifies all previous Kurosh-type rigidity results for free product type $\text{II}_{1}$ factors and is new for free product type $\text{III}$ factors. It moreover provides new rigidity phenomena for type $\text{III}$ factors.



Hide All
[Ana95] Anantharaman-Delaroche, C., Amenable correspondences and approximation properties for von Neumann algebras , Pacific J. Math. 171 (1995), 309341.
[AH14] Ando, H. and Haagerup, U., Ultraproducts of von Neumann algebras , J. Funct. Anal. 266 (2014), 68426913.
[Ash09] Asher, J., A Kurosh-type theorem for type III factors , Proc. Amer. Math. Soc. 137 (2009), 41094116.
[BHR14] Boutonnet, R., Houdayer, C. and Raum, S., Amalgamated free product type III factors with at most one Cartan subalgebra , Compos. Math. 150 (2014), 143174.
[BO08] Brown, N. P. and Ozawa, N., C -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88 (American Mathematical Society, Providence, RI, 2008).
[CM82] Chandler, B. and Magnus, W., The history of combinatorial group theory. A case study in the history of ideas, Studies in the History of Mathematics and Physical Sciences, vol. 9 (Springer, New York, 1982).
[CH10] Chifan, I. and Houdayer, C., Bass–Serre rigidity results in von Neumann algebras , Duke Math. J. 153 (2010), 2354.
[CS13] Chifan, I. and Sinclair, T., On the structural theory of II 1 factors of negatively curved groups , Ann. Sci. Éc. Norm. Supér. 46 (2013), 133.
[Con73] Connes, A., Une classification des facteurs de type III , Ann. Sci. Éc. Norm. Supér. 6 (1973), 133252.
[Con74] Connes, A., Almost periodic states and factors of type III 1 , J. Funct. Anal. 16 (1974), 415445.
[Con76] Connes, A., Classification of injective factors. Cases II 1 , II , III 𝜆 , 𝜆≠1 , Ann. of Math. (2) 74 (1976), 73115.
[CJ85] Connes, A. and Jones, V. F. R., Property T for von Neumann algebras , Bull. Lond. Math. Soc. 17 (1985), 5762.
[CT77] Connes, A. and Takesaki, M., The flow of weights of factors of type III , Tôhoku Math. J. 29 (1977), 473575.
[CH89] Cowling, M. and Haagerup, U., Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one , Invent. Math. 96 (1989), 507549.
[GJ07] Gao, M. and Junge, M., Examples of prime von Neumann algebras , Int. Math. Res. Not. IMRN 2007 (2007), doi:10.1093/imrn/rnm042.
[Ge96] Ge, L., On maximal injective subalgebras of factors , Adv. Math. 118 (1996), 3470.
[Haa86] Haagerup, U., Connes’ bicentralizer problem and uniqueness of the injective factor of type III 1 , Acta Math. 69 (1986), 95148.
[HS90] Haagerup, U. and Størmer, E., Equivalence of normal states on von Neumann algebras and the flow of weights , Adv. Math. 83 (1990), 180262.
[Hou07] Houdayer, C., Sur la classification de certaines algèbres de von Neumann, PhD thesis, Université Paris VII (2007).
[HI17] Houdayer, C. and Isono, Y., Unique prime factorization and bicentralizer problem for a class of type III factors , Adv. Math. 305 (2017), 402455.
[HR15] Houdayer, C. and Raum, S., Asymptotic structure of free Araki–Woods factors , Math. Ann. 363 (2015), 237267.
[HU16] Houdayer, C. and Ueda, Y., Asymptotic structure of free product von Neumann algebras , Math. Proc. Cambridge Philos. Soc. 161 (2016), 489516.
[HV13] Houdayer, C. and Vaes, S., Type III factors with unique Cartan decomposition , J. Math. Pures Appl. 100 (2013), 564590.
[Ioa15] Ioana, A., Cartan subalgebras of amalgamated free product II 1 factors , Ann. Sci. Éc. Norm. Supér. 48 (2015), 71130.
[IPP08] Ioana, A., Peterson, J. and Popa, S., Amalgamated free products of w-rigid factors and calculation of their symmetry groups , Acta Math. 200 (2008), 85153.
[ILP98] Izumi, M., Longo, R. and Popa, S., A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras , J. Funct. Anal. 155 (1998), 2563.
[Kad84] Kadison, R. V., Diagonalizing matrices , Amer. J. Math. 106 (1984), 14511468.
[KR97] Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras, Vol. II, Advanced theory, Graduate Studies in Mathematics, vol. 16 (American Mathematical Society, Providence, RI, 1997); pp. i–xxii and 399–1074, corrected reprint of the 1986 original.
[Ocn85] Ocneanu, A., Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138 (Springer, Berlin, 1985).
[Oza04] Ozawa, N., Solid von Neumann algebras , Acta Math. 192 (2004), 111117.
[Oza06] Ozawa, N., A Kurosh type theorem for type II 1 factors , Int. Math. Res. Not. IMRN 2006 (2006), doi:10.1155/IMRN/2006/97560.
[OP04] Ozawa, N. and Popa, S., Some prime factorization results for type II 1 factors , Invent. Math. 156 (2004), 223234.
[OP10] Ozawa, N. and Popa, S., On a class of II 1 factors with at most one Cartan subalgebra , Ann. of Math. (2) 172 (2010), 713749.
[Pet09] Peterson, J., L2 -rigidity in von Neumann algebras , Invent. Math. 175 (2009), 417433.
[Pop81] Popa, S., On a problem of R.V. Kadison on maximal abelian ∗-subalgebras in factors , Invent. Math. 65 (1981), 269281.
[Pop83] Popa, S., Maximal injective subalgebras in factors associated with free groups , Adv. Math. 50 (1983), 2748.
[Pop93] Popa, S., Markov traces on universal Jones algebras and subfactors of finite index , Invent. Math. 111 (1993), 375405.
[Pop06a] Popa, S., On a class of type II 1 factors with Betti numbers invariants , Ann. of Math. (2) 163 (2006), 809899.
[Pop06b] Popa, S., Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups I , Invent. Math. 165 (2006), 369408.
[Pop08] Popa, S., On the superrigidity of malleable actions with spectral gap , J. Amer. Math. Soc. 21 (2008), 9811000.
[PV14] Popa, S. and Vaes, S., Unique Cartan decomposition for II 1 factors arising from arbitrary actions of free groups , Acta Math. 212 (2014), 141198.
[Tak03] Takesaki, M., Theory of operator algebras II , in Operator algebras and non-commutative geometry, Vol. 6, Encyclopaedia of Mathematical Sciences, vol. 125 (Springer, Berlin, 2003).
[Tom72] Tomiyama, J., On some types of maximal abelian subalgebras , J. Funct. Anal. 10 (1972), 373386.
[Ued99] Ueda, Y., Amalgamated free products over Cartan subalgebra , Pacific J. Math. 191 (1999), 359392.
[Ued01] Ueda, Y., Remarks on free products with respect to non-tracial states , Math. Scand. 88 (2001), 111125.
[Ued11] Ueda, Y., Factoriality, type classification and fullness for free product von Neumann algebras , Adv. Math. 228 (2011), 26472671.
[Ued13] Ueda, Y., Some analysis on amalgamated free products of von Neumann algebras in non-tracial setting , J. Lond. Math. Soc. (2) 88 (2013), 2548.
[Vae08] Vaes, S., Explicit computations of all finite index bimodules for a family of II 1 factors , Ann. Sci. Éc. Norm. Supér. 41 (2008), 743788.
[Vae14] Vaes, S., Normalizers inside amalgamated free product von Neumann algebras , Publ. Res. Inst. Math. Sci. 50 (2014), 695721.
[VV07] Vaes, S. and Vergnioux, R., The boundary of universal discrete quantum groups, exactness, and factoriality , Duke Math. J. 140 (2007), 3584.
[Voi85] Voiculescu, D.-V., Symmetries of some reduced free product C -algebras , in Operator algebras and their connections with topology and ergodic theory, Lecture Notes in Mathematics, vol. 1132 (Springer, 1985), 556588.
[VDN92] Voiculescu, D.-V., Dykema, K. J. and Nica, A., Free random variables, CRM Monograph Series, vol. 1 (American Mathematical Society, Providence, RI, 1992).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Related content

Powered by UNSILO

Rigidity of free product von Neumann algebras

  • Cyril Houdayer (a1) and Yoshimichi Ueda (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.