Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-mhx7p Total loading time: 0.303 Render date: 2022-05-18T04:41:07.187Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Schemes over 𝔽1 and zeta functions

Published online by Cambridge University Press:  21 April 2010

Alain Connes
Affiliation:
Collège de France 3, I.H.E.S. and Vanderbilt University, rue d’Ulm, Paris F-75005, France (email: alain@connes.org)
Caterina Consani
Affiliation:
Mathematics Department, The Johns Hopkins University, Baltimore, MD 21218, USA (email: kc@math.jhu.edu)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determine the real counting function N(q) (q∈[1,)) for the hypothetical ‘curve’ over 𝔽1, whose corresponding zeta function is the complete Riemann zeta function. We show that such a counting function exists as a distribution, is positive on (1,) and takes the value − at q=1 as expected from the infinite genus of C. Then, we develop a theory of functorial 𝔽1-schemes which reconciles the previous attempts by Soulé and Deitmar. Our construction fits with the geometry of monoids of Kato, is no longer limited to toric varieties and it covers the case of schemes associated with Chevalley groups. Finally we show, using the monoid of adèle classes over an arbitrary global field, how to apply our functorial theory of -schemes to interpret conceptually the spectral realization of zeros of L-functions.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Connes, A., Trace formula in non-commutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.) 5 (1999), 29106.CrossRefGoogle Scholar
[2]Connes, A. and Consani, C., On the notion of geometry over 𝔽1, J. Algebraic Geom., to appear, arXiv08092926v2 [mathAG].Google Scholar
[3]Connes, A. and Consani, C., Characteristic 1, entropy and the absolute point. Preprint (2009), arXiv:MathAG0911.3537.Google Scholar
[4]Connes, A., Consani, C. and Marcolli, M., Noncommutative geometry and motives: the thermodynamics of endomotives, Adv. Math. 214 (2007), 761831.CrossRefGoogle Scholar
[5]Connes, A., Consani, C. and Marcolli, M., The Weil proof and the geometry of the adeles class space, in Algebra, arithmetic and geometry–Manin Festschrift, Progress in Mathematics, vol. 269 (Birkhäuser, Boston, MA, 2008).Google Scholar
[6]Connes, A., Consani, C. and Marcolli, M., Fun with 𝔽1, J. Number Theory 129 (2009), 15321561.CrossRefGoogle Scholar
[7]Connes, A. and Marcolli, M., Noncommutative geometry, quantum fields, and motives, Colloquium Publications, vol. 55 (American Mathematical Society, Providence, RI, 2008).Google Scholar
[8]Deitmar, A., Schemes over F1, in Number fields and function fields? Two parallel worlds, Progress in Mathematics, vol. 239 eds van der Geer, G., Moonen, B. and Schoof, R. (Birkhäuser, Boston, MA, 2005).Google Scholar
[9]Deitmar, A., Remarks on zeta functions and K-theory over F1, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), 141146.Google Scholar
[10]Deitmar, A., F1-schemes and toric varieties, Contrib. Algebra Geom. 49 (2008), 517525.Google Scholar
[11]Demazure, M. and Gabriel, P., Groupes algébriques (Masson & CIE Éditeur, Paris, 1970).Google Scholar
[12]Demazure, M., Grothendieck, A.et al., Séminaire de Géométrie Algébrique (SGA3): Schémas en Groupes III, Lecture Notes in Mathematics, vol. 569 (Springer, Berlin, 1977).Google Scholar
[13]Gilmer, R., Commutative semigroup rings (University of Chicago Press, Chicago, IL, 1980).Google Scholar
[14]Grothendieck, A., Sur quelques points d’algèbre homologique, Tohoku Math. J. 9 (1957), 119183.Google Scholar
[15]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977).CrossRefGoogle Scholar
[16]Ingham, A., The distribution of prime numbers, With a foreword by R. C. Vaughan, in Cambridge mathematical library (Cambridge University Press, Cambridge, 1990).Google Scholar
[17]Kapranov, M. and Smirnov, A., Cohomology determinants and reciprocity laws,http://matrix.cmi.ua.ac.be/fun/index.php/kapranovsmirnov.html.Google Scholar
[18]Kato, K., Toric singularities, Amer. J. Math. 116 (1994), 10731099.CrossRefGoogle Scholar
[19]Kurokawa, N., Multiple zeta functions: an example, in Zeta functions in geometry (Tokyo, 1990), Advanced Studies in Pure Mathematics, vol. 21 (Kinokuniya, Tokyo, 1992), 219226.Google Scholar
[20]Kurokawa, N., Ochiai, H. and Wakayama, A., Absolute derivations and zeta functions, Documenta Math., Extra Volume: Kazuya Katos Fiftieth Birthday (2003), 565–584.Google Scholar
[21]Manin, Y. I., Lectures on zeta functions and motives (according to Deninger and Kurokawa) Columbia university number-theory seminar (1992), Astérisque 4 (1995), 121163.Google Scholar
[22]Meyer, R., On a representation of the idele class group related to primes and zeros ofL-functions, Duke Math. J. 127 (2005), 519595.CrossRefGoogle Scholar
[23]Soulé, C., Les variétés sur le corps à un élément, Mosc. Math. J. 4 (2004), 217244.Google Scholar
[24]Steinberg, R., A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. Math. Soc. 71 (1951), 274282.CrossRefGoogle Scholar
[25]Tits, J., Sur les analogues algébriques des groupes semi-simples complexes. Colloque d’algèbre supérieure, Bruxelles 19–22 décembre 1956, in Centre Belge de Recherches Mathématiques Établissements Ceuterick (Louvain; Librairie Gauthier-Villars, Paris, 1957), 261289.Google Scholar
[26]Töen, B. and Vaquié, M., Au dessous de Spec(ℤ), J. K-theory 3 (2009), 437500.CrossRefGoogle Scholar
You have Access
52
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Schemes over 𝔽1 and zeta functions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Schemes over 𝔽1 and zeta functions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Schemes over 𝔽1 and zeta functions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *