Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 23
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ito, Masahiko and Forrester, Peter J. 2015. The q-Dixon–Anderson integral and multi-dimensional <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals="" xmlns:sa=""><mml:mmultiscripts><mml:mrow><mml:mi>ψ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:none/><mml:mprescripts/><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:none/></mml:mmultiscripts></mml:math> summations. Journal of Mathematical Analysis and Applications, Vol. 423, Issue. 2, p. 1704.

    Borodin, Alexei and Corwin, Ivan 2014. Macdonald processes. Probability Theory and Related Fields, Vol. 158, Issue. 1-2, p. 225.

    Cai, Tommy Wuxing and Jing, Naihuan 2014. A generalization of Newton's identity and Macdonald functions. Journal of Combinatorial Theory, Series A, Vol. 125, p. 342.

    Razamat, Shlomo S. and Willett, Brian 2014. Down the rabbit hole with theories of class S $$ \mathcal{S} $$. Journal of High Energy Physics, Vol. 2014, Issue. 10,

    Lassalle, Michel 2013. Class expansion of some symmetric functions in Jucys–Murphy elements. Journal of Algebra, Vol. 394, p. 397.

    Fateev, V. A. and Litvinov, A. V. 2012. Integrable structure, W-symmetry and AGT relation. Journal of High Energy Physics, Vol. 2012, Issue. 1,

    Gorin, Vadim 2012. The q-Gelfand–Tsetlin graph, Gibbs measures and q-Toeplitz matrices. Advances in Mathematics, Vol. 229, Issue. 1, p. 201.

    Alba, Vasyl A. Fateev, Vladimir A. Litvinov, Alexey V. and Tarnopolskiy, Grigory M. 2011. On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture. Letters in Mathematical Physics, Vol. 98, Issue. 1, p. 33.

    Lascoux, Alain and Warnaar, S. Ole 2011. Branching rules for symmetric functions and <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals=""><mml:msub><mml:mi mathvariant="fraktur">sl</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:math> basic hypergeometric series. Advances in Applied Mathematics, Vol. 46, Issue. 1-4, p. 424.

    Rains, Eric M. 2010. Transformations of elliptic hypergeometric integrals. Annals of Mathematics, Vol. 171, Issue. 1, p. 169.

    Lassalle, Michel 2009. Jack polynomials and free cumulants. Advances in Mathematics, Vol. 222, Issue. 6, p. 2227.

    Sergeev, A. N. and Veselov, A. P. 2009. Deformed Macdonald-Ruijsenaars Operators and Super Macdonald Polynomials. Communications in Mathematical Physics, Vol. 288, Issue. 2, p. 653.

    Warnaar, S. Ole 2008. On the generalised Selberg integral of Richards and Zheng. Advances in Applied Mathematics, Vol. 40, Issue. 2, p. 212.

    Koornwinder, Tom H. and Onn, Uri 2007. LU factorizations, q = 0 limits, and p-adic interpretations of some q-hypergeometric orthogonal polynomials. The Ramanujan Journal, Vol. 13, Issue. 1-3, p. 365.

    Onn, Uri 2006. From p-adic to real Grassmannians via the quantum. Advances in Mathematics, Vol. 204, Issue. 1, p. 152.

    Ben Saïd, Salem and Ørsted, Bent 2005. Analysis on flat symmetric spaces. Journal de Mathématiques Pures et Appliquées, Vol. 84, Issue. 10, p. 1393.

    Forrester, Peter J. and Rains, Eric M. 2005. Interpretations of some parameter dependent generalizations of classical matrix ensembles. Probability Theory and Related Fields, Vol. 131, Issue. 1, p. 1.

    Ivanov, V. N. 2005. Interpolation Analogs of Schur Q-Functions. Journal of Mathematical Sciences, Vol. 131, Issue. 2, p. 5495.

    Sergeev, A.N. and Veselov, A.P. 2005. Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials. Advances in Mathematics, Vol. 192, Issue. 2, p. 341.

    Окуньков, Андрей Юрьевич and Okounkov, Andrei Yur'evich 2002. Замечание о спаривании Фурье и биномиальной формуле для многочленов Макдональда. Функциональный анализ и его приложения, Vol. 36, Issue. 2, p. 62.


(Shifted) Macdonald polynomials: q-Integral representation and combinatorial formula

  • DOI:
  • Published online: 01 June 1998

We extend some results about shifted Schur functions to the general context of shifted Macdonald polynomials. We strengthen some theorems of F. Knop and S. Sahi and give two explicit formulas for these polynomials: a q-integral representation and a combinatorial formula. Our main tool is a q-integral representation for ordinary Macdonald polynomial. We also discuss duality for shifted Macdonald polynomials and Jack degeneration of these polynomials.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *