Skip to main content Accessibility help

Spinors and essential dimension

  • Skip Garibaldi (a1) and Robert M. Guralnick (a2)

We prove that spin groups act generically freely on various spinor modules, in the sense of group schemes and in a way that does not depend on the characteristic of the base field. As a consequence, we extend the surprising calculation of the essential dimension of spin groups and half-spin groups in characteristic zero by Brosnan et al. [Essential dimension, spinor groups, and quadratic forms, Ann. of Math. (2) 171 (2010), 533–544], and Chernousov and Merkurjev [Essential dimension of spinor and Clifford groups, Algebra Number Theory 8 (2014), 457–472] to fields of characteristic different from two. We also complete the determination of generic stabilizers in spin and half-spin groups of low rank.

Hide All
[AP71] Andreev, E. M. and Popov, V. L., Stationary subgroups of points of general position in the representation space of a semisimple Lie group , Funct. Anal. Appl. 5 (1971), 265271.
[AS76] Aschbacher, M. and Seitz, G., Involutions in Chevalley groups over fields of even order , Nagoya Math. J. 63 (1976), 191.
[ABS90] Azad, H., Barry, M. and Seitz, G., On the structure of parabolic subgroups , Comm. Algebra 18 (1990), 551562.
[BM12] Baek, S. and Merkurjev, A., Essential dimension of central simple algebras , Acta Math. 209 (2012), 127.
[BS66] Borel, A. and Springer, T. A., Rationality properties of linear algebraic groups , in Algebraic groups and discontinuous subgroups (Proceedings of Symposium in Pure Mathematics, Boulder, CO, 1965) (American Mathematical Society, Providence, RI, 1966), 2632.
[Bou02] Bourbaki, N., Lie groups and Lie algebras (Springer, Berlin, 2002).
[BRV10] Brosnan, P., Reichstein, Z. and Vistoli, A., Essential dimension, spinor groups, and quadratic forms , Ann. of Math. (2) 171 (2010), 533544.
[BR97] Buhler, J. and Reichstein, Z., On the essential dimension of a finite group , Compositio Math. 106 (1997), 159179.
[CM14] Chernousov, V. and Merkurjev, A. S., Essential dimension of spinor and Clifford groups , Algebra Number Theory 8 (2014), 457472.
[CS06] Chernousov, V. and Serre, J.-P., Lower bounds for essential dimensions via orthogonal representations , J. Algebra 305 (2006), 10551070.
[Che97] Chevalley, C., The algebraic theory of spinors (Springer, Berlin, 1997), reprint of the 1954 edition.
[CM93] Collingwood, D. and McGovern, W. M., Nilpotent orbits in semisimple Lie algebras (Van Nostrant Reinhold, New York, 1993).
[DG70] Demazure, M. and Grothendieck, A., Schémas en groupes II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Lecture Notes in Mathematics, vol. 152 (Springer, Berlin, 1970).
[Flo08] Florence, M., On the essential dimension of cyclic p-groups , Invent. Math. 171 (2008), 175189.
[FGS16] Fulman, J., Guralnick, R. and Stanton, D., Asymptotics of the number of involutions in finite classical groups. Preprint (2016), arXiv:1602.03611.
[Gar98] Garibaldi, S., Isotropic trialitarian algebraic groups , J. Algebra 210 (1998), 385418.
[Gar09] Garibaldi, S., Cohomological invariants: exceptional groups and spin groups, Memoirs American Mathematical Society, vol. 937 (American Mathematical Society, Providence, RI, 2009), with an appendix by Detlev W. Hoffmann.
[GG15] Garibaldi, S. and Guralnick, R. M., Simple groups stabilizing polynomials , Forum Math.: Pi 3 (2015), e3 (41 pages), doi:10.1017/fmp.2015.3.
[GG16] Garibaldi, S. and Guralnick, R. M., Essential dimension of algebraic groups, including bad characteristic , Arch. Math. 107 (2016), 101119.
[GV78] Gatti, V. and Viniberghi, E., Spinors of 13-dimensional space , Adv. Math. 30 (1978), 137155.
[GR09] Gille, P. and Reichstein, Z., A lower bound on the essential dimension of a connected linear group , Comment. Math. Helv. 84 (2009), 189212.
[Gue97] Guerreiro, M., Exceptional representations of simple algebraic groups in prime characteristic, PhD thesis, University of Manchester (1997), arXiv:1210.6919.
[GLMS97] Guralnick, R. M., Liebeck, M. W., Macpherson, D. and Seitz, G. M., Modules for algebraic groups with finitely many orbits on subspaces , J. Algebra 196 (1997), 211250.
[Igu70] Igusa, J.-I., A classification of spinors up to dimension twelve , Amer. J. Math. 92 (1970), 9971028.
[KM03] Karpenko, N. and Merkurjev, A., Essential dimension of quadrics , Invent. Math. 153 (2003), 361372.
[KM08] Karpenko, N. and Merkurjev, A., Essential dimension of finite p-groups , Invent. Math. 172 (2008), 491508.
[KMRT98] Knus, M.-A., Merkurjev, A. S., Rost, M. and Tignol, J.-P., The book of involutions, Colloquium Publications, vol. 44 (American Mathematical Society, Providence, RI, 1998).
[Lie87] Liebeck, M. W., The affine permutation groups of rank 3 , Proc. Lond. Math. Soc. (3) 54 (1987), 477516.
[LS12] Liebeck, M. and Seitz, G., Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Mathematical Surveys Monographs, vol. 180 (American Mathematical Society, Providence, RI, 2012).
[Lot13] Lötscher, R., A fiber dimension theorem for essential and canonical dimension , Compositio Math. 149 (2013), 148174.
[LMMR13] Lötscher, R., MacDonald, M., Meyer, A. and Reichstein, Z., Essential dimension of algebraic tori , J. Reine Angew. Math. 677 (2013), 113.
[Mer09] Merkurjev, A., Essential dimension, quadratic forms–algebra, arithmetic, and geometry, Contemporary Mathematics, vol. 493, eds Baeza, R., Chan, W. K., Hoffmann, D. W. and Schulze-Pillot, R. (American Mathematical Society, Providence, RI, 2009), 299325.
[Mer10] Merkurjev, A., Essential p-dimension of PGL(p 2) , J. Amer. Math. Soc. 23 (2010), 693712.
[Mer13] Merkurjev, A., Essential dimension: A survey , Transform. Groups 18 (2013), 415481.
[Mer16] Merkurjev, A., Essential dimension , in Séminaire Bourbaki, Astérisque, vol. 380 (Société Mathématique de France, 2016), 423448.
[Mer17] Merkurjev, A., Invariants of algebraic groups and retract rationality of classifying spaces , in Algebraic groups: structure and actions, Proceedings of Symposia in Pure Mathematics, vol. 94 (American Mathematical Society, Providence, RI, 2017). Preprint (2015),∼merkurev/papers/retract-class-space.pdf.
[Pop88] Popov, A. M., Finite isotropy subgroups in general position of simple linear Lie groups , Trans. Moscow Math. Soc. (1988), 205249 (Russian original: Trudy Moskov. Mat. Obschch. 50 (1987), 209–248, 262).
[Pop80] Popov, V. L., Classification of spinors of dimension 14 , Trans. Moscow Math. Soc. 37 (1980), 181232.
[Rei10] Reichstein, Z., Essential dimension , in Proceedings of the international congress of mathematicians 2010 (World Scientific, Singapore, 2010).
[RY00] Reichstein, Z. and Youssin, B., Essential dimensions of algebraic groups and a resolution theorem for G-varieties , Canad. J. Math. 52 (2000), 10181056, with an appendix by J. Kollár and E. Szabó.
[Roh93] Röhrle, G., On certain stabilizers in algebraic groups , Comm. Algebra 21 (1993), 16311644.
[Ros99a] Rost, M., On 14-dimensional quadratic forms, their spinors, and the difference of two octonion algebras, Preprint (1999),∼rost/spin-14.html.
[Ros99b] Rost, M., On the Galois cohomology of Spin(14), Preprint (1999),∼rost/spin-14.html.
[Ste68] Steinberg, R., Lectures on Chevalley groups (Yale University, New Haven, CT, 1968).
[SF88] Strade, H. and Farnsteiner, R., Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 116 (Marcel Dekker, New York, 1988).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed