Published online by Cambridge University Press: 11 October 2018
In this paper we establish Springer correspondence for the symmetric pair $(\text{SL}(N),\text{SO}(N))$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaf construction. As an application of our results we see that the cohomology of Hessenberg varieties can be expressed in terms of irreducible representations of Hecke algebras of symmetric groups at
$q=-1$. Conversely, we see that the irreducible representations of Hecke algebras of symmetric groups at
$q=-1$ arise in geometry.
The first author was supported in part by the AMS-Simons travel grant and the NSF grant DMS-1702337. The second author was supported in part by the ARC grants DP150103525 and DP180101445, the Academy of Finland, the Humboldt Foundation, the Simons Foundation, and the NSF grant DMS-1402928. The third author was supported in part by the ARC grants DE160100975, DP150103525 and the Academy of Finland.