Skip to main content Accessibility help

Stability conditions and birational geometry of projective surfaces

  • Yukinobu Toda (a1)


We show that the minimal model program on any smooth projective surface is realized as a variation of the moduli spaces of Bridgeland stable objects in the derived category of coherent sheaves.



Hide All
[AB13]Arcara, D. and Bertram, A., Bridgeland-stable moduli spaces for K-trivial surfaces. With an appendix by Max Lieblich, J. Eur. Math. Soc. 15 (2013), 138.
[ABCH13]Arcara, D., Bertram, A., Coskun, I. and Huizenga, J., The minimal model program for Hilbert schemes of points on the projective plane and Bridgeland stability, Adv. Math. 235 (2013), 580626.
[BM14]Bayer, A. and Macri, E., Projectivity and birational geometry of Bridgeland moduli spaces, J. Amer. Math. Soc. 27 (2014), 707752.
[BMT14]Bayer, A., Macri, E. and Toda, Y., Bridgeland stability conditions on 3-folds I: Bogomolov–Gieseker type inequalities, J. Algebraic Geom. 23 (2014), 117163.
[BBD82]Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers. Analysis and topology on singular spaces I, Asterisque 100 (1982), 5171.
[Bri02]Bridgeland, T., Flops and derived categories, Invent. Math. 147 (2002), 613632.
[Bri07]Bridgeland, T., Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), 317345.
[Bri08]Bridgeland, T., Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), 241291.
[vdB04]Van den Bergh, M., Three dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), 423455.
[Dou02]Douglas, M., Dirichlet branes, homological mirror symmetry, and stability, in Proceedings of the ICM (Beijing 2002), Vol. III (Higher Education Press, Beijing, 2002), 395408.
[GM03]Gelfand, S. and Manin, Y., Methods of homological algebra, Springer Monographs in Mathematics, second edition (Springer, Berlin, 2003).
[HRS96]Happel, D., Reiten, I. and Smalø, S. O., Tilting in abelian categories and quasitilted algebras, Memoirs of the American Mathematical Society, vol. 120 (American Mathematical Society, Providence, RI, 1996).
[HMS08]Huybrechts, D., Macri, E. and Stellari, P., Stability conditions for generic K3 categories, Compositio Math. 144 (2008), 134162.
[Ina02]Inaba, M., Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ. 42 (2002), 317329.
[KS08]Kontsevich, M. and Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, Preprint (2008), arXiv:0811.2435.
[Mac12]Maciocia, A., Computing the walls associated to Bridgeland stability conditions on projective surfaces, Preprint (2012), arXiv:1202.4587.
[MM13]Maciocia, A. and Meachan, C., Rank one Bridgeland stable moduli spaces on a principally polarized abelian surfaces, Int. Math. Res. Not. IMRN 9 (2013), 20542077.
[MYY11a]Minamide, H., Yanagida, S. and Yoshioka, K., Fourier–Mukai transforms and the wall-crossing behavior for Bridgeland’s stability conditions, Preprint (2011), arXiv:1106.5217.
[MYY11b]Minamide, H., Yanagida, S. and Yoshioka, K., Some moduli spaces of Bridgeland stability conditions, Preprint (2011), arXiv:1111.6187.
[Tod13a]Toda, Y., Curve counting theories via stable objects II. DT/ncDT/flop formula, J. Reine Angew. Math. 675 (2013), 151.
[Tod13b]Toda, Y., Stability conditions and extremal contractions, Math. Ann. 357 (2013), 631685.
[Tod08a]Toda, Y., Moduli stacks and invariants of semistable objects on K3 surfaces, Adv. Math. 217 (2008), 27362781.
[Tod08b]Toda, Y., Stability conditions and crepant small resolutions, Trans. Amer. Math. Soc. 360 (2008), 61496178.
[Tod10]Toda, Y., Curve counting theories via stable objects I: DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), 11191157.
[YY12]Yanagida, S. and Yoshioka, K., Bridgeland stabilities on abelian surfaces, Preprint (2012),arXiv:1203.0884.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed