Hostname: page-component-cb9f654ff-65tv2 Total loading time: 0 Render date: 2025-08-19T07:30:29.981Z Has data issue: false hasContentIssue false

A strong Frankel theorem for shrinkers

Published online by Cambridge University Press:  19 August 2025

Tobias Holck Colding
Affiliation:
Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA colding@math.mit.edu
William P. Minicozzi II
Affiliation:
Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA minicozz@math.mit.edu

Abstract

We prove a strong Frankel theorem for mean curvature flow shrinkers in all dimensions: Any two shrinkers in a sufficiently large ball must intersect. In particular, the shrinker itself must be connected in all large balls. The key to the proof is a strong Bernstein theorem for incomplete stable Gaussian surfaces.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andrews, B., Li, H. and Wei, Y., $\mathcal {F}$ -stability for self-shrinking solutions to mean curvature flow , Asian J. Math. 18 (2014), 757777.10.4310/AJM.2014.v18.n5.a1CrossRefGoogle Scholar
Arezzo, C. and Sun, J., Self-shrinkers for the mean curvature flow in arbitrary codimension , Math. Z. 274 (2013), 9931027.10.1007/s00209-012-1104-yCrossRefGoogle Scholar
Bernstein, J. and Wang, L., A topological property of asymptotically conical self-shrinkers of small entropy , Duke Math. J. 166 (2017), 403435.10.1215/00127094-3715082CrossRefGoogle Scholar
Brendle, S., Embedded self-similar shrinkers of genus, 0 , Ann. Math. (2) 183 (2016), 715728.10.4007/annals.2016.183.2.6CrossRefGoogle Scholar
Cao, H. D. and Zhou, D., On complete gradient shrinking Ricci solitons , J. Differ. Geom. 85 (2010), 175186.10.4310/jdg/1287580963CrossRefGoogle Scholar
Cavalcante, M. P. and Espinar, J. M., Halfspace type theorems for self-shrinkers , Bull. Lond. Math. Soc. 48 (2016), 242250.10.1112/blms/bdv099CrossRefGoogle Scholar
Cheeger, J. and Naber, A., Quantitative stratification and the regularity of harmonic maps and minimal currents , Comm. Pure Appl. Math. 66 (2013), 965990.10.1002/cpa.21446CrossRefGoogle Scholar
Cheng, X. and Zhou, D., Volume estimate about shrinkers , Proc. Amer. Math. Soc. 141 (2013), 687696.10.1090/S0002-9939-2012-11922-7CrossRefGoogle Scholar
Chodosh, O., Choi, K., Mantoulidis, C. and Schulze, F., Mean curvature flow with generic initial data , Invent. Math. 237 (2024), 121220.10.1007/s00222-024-01258-0CrossRefGoogle Scholar
Choi, K., Haslhofer, R., Hershkovits, O. and White, B., Ancient asymptotically cylindrical flows and applications , Invent. Math. 229 (2022), 139241.10.1007/s00222-022-01103-2CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, Generic mean curvature flow I; generic singularities , Ann. Math. 175 (2012), 755833.10.4007/annals.2012.175.2.7CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, A course in minimal surfaces , Graduate Studies in Mathematics, vol. 121 (American Mathematical Society, Providence, RI, 2011).Google Scholar
Colding, T. H. and Minicozzi, W. P. II, The space of embedded minimal surfaces of fixed genus in a 3-manifold. IV. Locally simply connected, Ann. Math. (2) 160 (2004), 573615.10.4007/annals.2004.160.573CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, Smooth compactness of self-shrinkers, Comment. Math. Helv. 87 (2012), 463475.10.4171/cmh/260CrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, Complexity of parabolic systems , Publ. Math. Inst. Hautes Études Sci. 132 (2020), 83135.10.1007/s10240-020-00117-xCrossRefGoogle Scholar
Colding, T. H. and Minicozzi, W. P. II, Regularity of elliptic and parabolic systems , Ann. L’ENS 56 (2023), 18831921.Google Scholar
Colding, T. H. and Minicozzi, W. P. II. Singularities of Ricci flow and diffeomorphisms, Preprint (2025), arXiv:2109.06240. Google Scholar
Ding, Q. and Xin, Y. L., Volume growth, eigenvalue and compactness for self-shrinkers, Asian J. Math. 17 (2013), 443456.10.4310/AJM.2013.v17.n3.a3CrossRefGoogle Scholar
Federer, H.. Geometric measure theory, Die Grundlehren der Mathematischen Wissenschaften, band 153 (Springer-Verlag, New York, 1969).Google Scholar
Fraser, A. and Li, M. M.-C., Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary , J. Differ. Geom. 96 (2014), 183200.10.4310/jdg/1393424916CrossRefGoogle Scholar
Frankel, T., On the fundamental group of a compact minimal submanifold , Ann. Math. (2) 83 (1966), 6873.10.2307/1970471CrossRefGoogle Scholar
Hoffman, D. and Meeks, W. H. III, The strong halfspace theorem for minimal surfaces , Invent. Math. 101 (1990), 373377.10.1007/BF01231506CrossRefGoogle Scholar
Huisken, G., Asymptotic behavior for singularities of the mean curvature flow , J. Differ. Geom. 31 (1990), 285299.10.4310/jdg/1214444099CrossRefGoogle Scholar
Ilmanen, T.. Singularities of mean curvature flow of surfaces , Preprint (1995), https://people.math.ethz.ch/~ilmanen/papers/pub.html. Google Scholar
Impera, D., Pigola, S. and Rimoldi, M., The Frankel property for self-shrinkers from the viewpoint of elliptic PDEs , J. Reine Angew. Math. 773 (2021), 120.10.1515/crelle-2020-0044CrossRefGoogle Scholar
Lawson, H. B., The unknottedness of minimal embeddings, Invent. Math. 11 (1970), 183187.10.1007/BF01404649CrossRefGoogle Scholar
Lee, Y.-I. and Lue, Y.-K., The stability of self-shrinkers of mean curvature flow in higher co-dimension , Trans. Amer. Math. Soc. 367 (2015), 24112435.10.1090/S0002-9947-2014-05969-2CrossRefGoogle Scholar
Mramor, A., On the unknottedness of self shrinkers in R3 , in Mean curvature flow (De Gruyter, Berlin, 2020), 120122.10.1515/9783110618365-013CrossRefGoogle Scholar
Mramor, A., An unknottedness result for noncompact self shrinkers , J. Reine Angew. Math. 810 (2024), 189215.Google Scholar
Mramor, A. and Wang, S., On the topological rigidity of compact self-shrinkers in $\mathbf {R}^3$ , Int. Math. Res. Not. IMRN (2020), 19331941.10.1093/imrn/rny050CrossRefGoogle Scholar
Pigola, S. and Rimoldi, M., Complete self-shrinkers confined into some regions of the space , Ann. Global Anal. Geom. 45 (2014), 4765.10.1007/s10455-013-9387-8CrossRefGoogle Scholar
Schoen, R. and Simon, L., Regularity of stable minimal hypersurfaces , Commun. Pure Appl. Math. 34 (1981), 741797.10.1002/cpa.3160340603CrossRefGoogle Scholar
Simon, L., Lectures on geometric measure theory , in Proc. of the CMA , vol. 3 (The Australian National University, Canberra, 1983). Google Scholar
Wang, L., A Bernstein type theorem for self-similar shrinkers , Geom. Dedicata 151 (2011), 297303.10.1007/s10711-010-9535-2CrossRefGoogle Scholar
Wang, L., Entropy in mean curvature flow, in International Congress of Mathematicians , vol. 4, Sections 5–8 (EMS Press, Berlin, 2023), 26562676.10.4171/icm2022/116CrossRefGoogle Scholar
Wei, G. and Wylie, W., Comparison geometry for the Bakry-Emery Ricci tensor , J. Differ. Geom. 83 (2009), 377405.10.4310/jdg/1261495336CrossRefGoogle Scholar
White, B., Stratification of minimal surfaces, mean curvature flows, and harmonic maps , J. Reine Angew. Math. 488 (1997), 135.Google Scholar
Wickramasekera, N., A general regularity theory for stable codimension 1 integral varifolds , Ann. Math. 179 (2014), 8431007.10.4007/annals.2014.179.3.2CrossRefGoogle Scholar