Skip to main content Accessibility help
×
×
Home

Structures de Hodge–Pink pour les φ/𝔖-modules de Breuil et Kisin

  • Alain Genestier (a1) and Vincent Lafforgue (a2)
Abstract

In this article, we apply the methods of our work on Fontaine’s theory in equal characteristics to the φ/𝔖-modules of Breuil and Kisin. Thanks to a previous article of Kisin, this yields a new and rather elementary proof of the theorem ‘weakly admissible implies admissible’ of Colmez and Fontaine.

Dans cet article, nous appliquons les méthodes de notre travail sur la théorie de Fontaine en égales caractéristiques aux φ/𝔖-modules de Breuil et Kisin. Grâce à un article précédent de Kisin, cela fournit une nouvelle démonstration assez élémentaire du théorème ‘faiblement admissible implique admissible’ de Colmez et Fontaine.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Structures de Hodge–Pink pour les φ/𝔖-modules de Breuil et Kisin
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Structures de Hodge–Pink pour les φ/𝔖-modules de Breuil et Kisin
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Structures de Hodge–Pink pour les φ/𝔖-modules de Breuil et Kisin
      Available formats
      ×
Copyright
References
Hide All
[Ber02]Berger, L., Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219284.
[Ber04]Berger, L., An introduction to the theory of p-adic representations, in Geometric aspects of Dwork theory (Walter de Gruyter, Berlin, 2004), 255292.
[Ber08]Berger, L., Équations différentielles p-adiques et (φ,N)-modules filtrés, Astérisque 319 (2008), 1338.
[Bre97a]Breuil, C., Construction de représentations p-adiques semi-stables, Ann. Sci. Éc. Norm. Supér. 31 (1997), 281327.
[Bre97b]Breuil, C., Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307 (1997), 191224.
[Bre98]Breuil, C., Schémas en groupes et corps des normes (1998), disponible àhttp://www.ihes.fr/∼breuil/publications.html.
[Bre99a]Breuil, C., Une application du corps des normes, Compositio Math. 117 (1999), 189203.
[Bre99b]Breuil, C., Représentations semi-stables et modules fortement divisibles, Invent. Math. 136 (1999), 89122.
[Bre02]Breuil, C., Integral p-adic Hodge theory, Adv. Stud. Pure Math. 36 (2002), 5180.
[CL09]Caruso, X. and Liu, T., Quasi-semi-stable representations, Bull. Soc. Math. France 137 (2009), 185223.
[CF00]Colmez, P. and Fontaine, M., Construction des représentations p-adiques semi-stables, Invent. Math. 140 (2000), 143.
[Fal99]Faltings, G., Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12 (1999), 117144.
[Fal02]Faltings, G., Group schemes with strict 𝒪-action, Mosc. Math. J. 2 (2002), 249279.
[Fon90]Fontaine, J.-M., Représentations p-adiques des corps locaux, I, in The Grothendieck festschrift. Vol. II, Progress in Mathematics, vol. 87 (Birkhäuser, Boston, Basel, Berlin, 1990), 249309.
[Fon94]Fontaine, J.-M., Représentations p-adiques semi-stables, Astérisque, vol. 223 (Soc. Math. France, Paris, 1994), 113184, with an appendix by Pierre Colmez.
[GL10]Genestier, A. and Lafforgue, V., Théorie de Fontaine en égales caractéristiques. A paraître aux Annales de l’ENS. Disponible à l’adresse http://www.math.jussieu.fr/∼vlafforg/fontaine.pdf.
[Ked04]Kedlaya, K., A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), 93184.
[Ked05]Kedlaya, K., Slope filtrations revisited, Doc. Math. 10 (2005), 447525.
[Kis06]Kisin, M., Crystalline representations and F-crystals, Progr. Math. 253 (2006), 459496, Drinfeld’s 50th birthday volume.
[Kis08]Kisin, M., Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), 513546.
[KR09]Kisin, M. and Ren, W., Galois representations and Lubin–Tate groups, Doc. Math. 14 (2009), 441461.
[Pin97]Pink, R., Hodge structures over function fields, Preprint (1997), disponible à l’adresse http://www.math.ethz.ch/∼pink.
[Pin00]Pink, R., Uniformisierung von t-motiven. Exposé, 12 juilllet 2000 (notes non publiées).
[RZ96]Rapoport, M. and Zink, T., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, NJ, 1996).
[RZ99]Rapoport, M. and Zink, T., A finiteness theorem in the Bruhat–Tits building : an application of Landvogt’s embedding theorem, Indag. Math. 10 (1999), 449458.
[Ser68]Serre, J. P., Corps locaux (Hermann, Paris, 1968).
[Ser95]Serre, J. P., Classes des corps cyclotomiques (d’après K. Iwasawa), Séminaire Bourbaki 1958/59, Exp. No. 174, vol. 5 (Société Mathématique de France, Paris, 1995), 8393.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed