Skip to main content Accessibility help
×
Home

Super-rigid affine Fano varieties

  • Ivan Cheltsov (a1) (a2), Adrien Dubouloz (a3) and Jihun Park (a4) (a5)

Abstract

We study a wide class of affine varieties, which we call affine Fano varieties. By analogy with birationally super-rigid Fano varieties, we define super-rigidity for affine Fano varieties, and provide many examples and non-examples of super-rigid affine Fano varieties.

Copyright

References

Hide All
[BD11] Blanc, J. and Dubouloz, A., Automorphisms of A1 -fibered surfaces , Trans. Amer. Math. Soc. 363 (2011), 58875924.
[BD15] Blanc, J. and Dubouloz, A., Affine surfaces with a huge group of automorphisms , Int. Math. Res. Not. IMRN 2015 (2015), 422459.
[CG66] Cassels, J. and Guy, M., On the Hasse principle for cubic surfaces , Mathematika 13 (1966), 111120.
[Che05] Cheltsov, I., Birationally rigid Fano varieties , Russian Math. Surveys 60 (2005), 875965.
[Che08a] Cheltsov, I., Log canonical thresholds of del Pezzo surfaces , Geom. Funct. Anal. 11 (2008), 11181144.
[Che08b] Cheltsov, I., Fano varieties with many selfmaps , Adv. Math. 217 (2008), 97124.
[Che09] Cheltsov, I., Log canonical thresholds of Fano threefold hypersurfaces , Izv. Math. 73 (2009), 727795.
[CK14] Cheltsov, I. and Kosta, D., Computing 𝛼-invariants of singular del Pezzo surfaces , J. Geom. Anal. 24 (2014), 798842.
[CP17] Cheltsov, I. and Park, J., Birationally rigid Fano threefold hypersurfaces , Mem. Amer. Math. Soc. 246 (2017).
[CPS10] Cheltsov, I., Park, J. and Shramov, C., Exceptional del Pezzo hypersurfaces , J. Geom. Anal. 20 (2010), 787816.
[CPW16a] Cheltsov, I., Park, J. and Won, J., Affine cones over smooth cubic surfaces , J. Eur. Math. Soc. 18 (2016), 15371564.
[CPW16b] Cheltsov, I., Park, J. and Won, J., Cylinders in singular del Pezzo surfaces , Compos. Math. 152 (2016), 11981224.
[CPS15] Cheltsov, I., Przyjalkowski, V. and Shramov, C., Which quartic double solids are rational?, J. Algebraic Geom., to appear. Preprint (2015), arXiv:1508.07277.
[CS11] Cheltsov, I. and Shramov, C., On exceptional quotient singularities , Geom. Topol. 15 (2011), 18431882.
[CS13] Cheltsov, I. and Shramov, C., Del Pezzo zoo , Exp. Math. 22 (2013), 313326.
[CS14] Cheltsov, I. and Shramov, C., Weakly-exceptional singularities in higher dimensions , J. Reine Angew. Math. 689 (2014), 201241.
[CG72] Clemens, C. and Griffiths, P., The intermediate Jacobian of the cubic threefold , Ann. of Math. (2) 95 (1972), 281356.
[Cor00] Corti, A., Singularities of linear systems and 3-fold birational geometry , in Explicit birational geometry of 3-folds, London Mathematical Society Lecture Note Series, vol. 281 (Cambridge University Press, 2000), 259312.
[CPR00] Corti, A., Pukhlikov, A. and Reid, M., Fano 3-fold hypersurfaces , in Explicit birational geometry of 3-folds, London Mathematical Society Lecture Note Series, vol. 281 (Cambridge University Press, 2000), 175258.
[DK15] Dubouloz, A. and Kishimoto, T., Log-uniruled affine varieties without cylinder-like open subsets , Bull. Soc. Math. France 143 (2015), 383401.
[DK18] Dubouloz, A. and Kishimoto, T., Cylinder in del Pezzo fibrations , Israel J. Math. 225 (2018), 797815.
[DL15] Dubouloz, A. and Lamy, S., Automorphisms of open surfaces with irreducible boundary , Osaka J. Math. 52 (2015), 747791.
[deF13] de Fernex, T., Birationally rigid hypersurfaces , Invent. Math. 192 (2013), 533566.
[Ian00] Iano-Fletcher, A., Working with weighted complete intersections , in Explicit birational geometry of 3-folds, London Mathematical Society Lecture Note Series, vol. 281 (Cambridge University Press, 2000), 101173.
[Giz70] Gizatullin, M., Affine surfaces that can be augmented by a nonsingular rational curve , Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 778802.
[GD75] Gizatullin, M. and Danilov, V., Automorphisms of affine surfaces. I , Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 523565.
[GD77] Gizatullin, M. and Danilov, V., Automorphisms of affine surfaces. II , Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 54103.
[Gri03] Grinenko, M., On a double cone over a Veronese surface , Izv. Math. 67 (2003), 421438.
[Gri04] Grinenko, M., Mori structures on a Fano threefold of index 2 and degree 1 , Proc. Steklov Inst. Math. 246 (2004), 103128.
[IM71] Iskovskih, V. and Manin, Yu., Three-dimensional quartics and counterexamples to the Lüroth problem , Mat. Sb. 86 (1971), 140166.
[JK01] Johnson, J. and Kollár, J., Fano hypersurfaces in weighted projective 4-spaces , Exp. Math. 10 (2001), 151158.
[KMc99] Keel, S. and McKernan, J., Rational curves on quasi-projective surfaces , Mem. Amer. Math. Soc. 140 (1999).
[KPZ11] Kishimoto, T., Prokhorov, Yu. and Zaidenberg, M., Affine cones over Fano threefolds and additive group actions, Preprint (2011), arXiv:1106.1312v1.1
[KPZ13] Kishimoto, T., Prokhorov, Yu. and Zaidenberg, M., G a -actions on affine cones , Transform. Groups 18 (2013), 11371153.
[Kol97] Kollár, J., Singularities of pairs , in Algebraic geometry (Santa Cruz, 1995) Part 1, Proceedings of Symposia in Pure Mathematics, vol. 62 (American Mathematical Society, 1997), 221287.
[MS91] Miyanishi, M. and Sugie, T., Homology planes with quotient singularities , J. Math. Kyoto Univ. 31 (1991), 755788.
[PZ16] Prokhorov, Y. and Zaidenberg, M., Examples of cylindrical Fano fourfolds , Eur. J. Math. 2 (2016), 262282.
[Puk98] Pukhlikov, A., Birational automorphisms of Fano hypersurfaces , Invent. Math. 134 (1998), 401426.
[Puk05] Pukhlikov, A., Birational geometry of Fano direct products , Izv. Math. 69 (2005), 12251255.
[Puk13] Pukhlikov, A., Birationally rigid varieties, Mathematical Surveys and Monographs, vol. 190 (American Mathematical Society, Providence, RI, 2013).
[Puk18] Pukhlikov, A., Automorphisms of certain affine complements in the projective space , Sb. Math. 209 (2018), 276289.
[Ros56] Rosenlicht, M., Some basic theorems on algebraic groups , Amer. J. Math. 78 (1956), 401443.
[Rus81] Russell, P., On affine-ruled rational surfaces , Math. Ann. 255 (1981), 287302.
[Sak12] Sakovics, D., Weakly-exceptional quotient singularities , Cent. Eur. J. Math. 10 (2012), 885902.
[Sak14] Sakovics, D., Five-dimensional weakly exceptional quotient singularities , Proc. Edinb. Math. Soc. (2) 57 (2014), 269279.
[Sho93] Shokurov, V., Three-fold log flips , Izv. Math. 40 (1993), 95202.
[SW90] Szurek, M. and Wiśniewski, J., Fano bundles of rank 2 on surfaces , Compos. Math. 76 (1990), 295305.
[Tia87] Tian, G., On Käahler–Einstein metrics on certain Kähler manifolds with C1(M) > 0 , Invent. Math. 89 (1987), 225246.
[Voi88] Voisin, C., Sur la jacobienne intermédiaire du double solide d’indice deux , Duke Math. J. 57 (1988), 629646.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed