No CrossRef data available.
Published online by Cambridge University Press: 01 September 2025
We give an explicit quadratic Gröbner basis for generalized Chow rings of supersolvable built lattices, with the help of the operadic structure on geometric lattices introduced in a previous article. This shows that the generalized Chow rings associated to minimal building sets of supersolvable lattices are Koszul. As another consequence, we get that the cohomology algebras of the components of the extended modular operad in genus $0$ are Koszul.