Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-09-03T13:23:54.972Z Has data issue: false hasContentIssue false

Supersolvability of built lattices and Koszulness of generalized Chow rings

Published online by Cambridge University Press:  01 September 2025

Basile Coron*
Affiliation:
115 Oppenheimer Lane, Princeton, NJ 08540, USA basile.coron.math@gmail.com

Abstract

We give an explicit quadratic Gröbner basis for generalized Chow rings of supersolvable built lattices, with the help of the operadic structure on geometric lattices introduced in a previous article. This shows that the generalized Chow rings associated to minimal building sets of supersolvable lattices are Koszul. As another consequence, we get that the cohomology algebras of the components of the extended modular operad in genus $0$ are Koszul.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adiprasito, K., Huh, J. and Katz, E., Hodge theory for combinatorial geometries, Ann. of Math. (2) 188 (2018), 381452.Google Scholar
Backman, S., Eur, C. and Simpson, C., Simplicial generation of Chow rings of matroids, Sém. Lothar. Combin. 84B (2020), 52.Google Scholar
Becker, T. and Weispfenning, V., Gröbner bases: a computational approach to commutative algebra (Springer, New York, 1993).Google Scholar
Berglund, A., Koszul spaces, Trans. Amer. Math. Soc. 366 (2014), 45514569.10.1090/S0002-9947-2014-05935-7CrossRefGoogle Scholar
Bibby, C., Denham, G. and Feichtner, E. M., A Leray model for the Orlik–Solomon algebra, Int. Math. Res. Notices (2021), 1910519174.Google Scholar
Birkhoff, G., Lattice theory, Colloquium Publications, vol. 25 (American Mathematical Society, Providence, RI, 1940).Google Scholar
Carr, M. P. and Devadoss, S. L., Coxeter complexes and graph-associahedra, Topology Appl. 153 (2006), 21552168.10.1016/j.topol.2005.08.010CrossRefGoogle Scholar
Cavalieri, R., Hampe, S., Markwig, H. and Ranganathan, D., Moduli spaces of rational weighted stable curves and tropical geometry, Forum Math. Sigma 4 (2016), 35.10.1017/fms.2016.7CrossRefGoogle Scholar
Coron, B., Matroids, Feynman categories, and Koszul duality, Preprint (2022), arXiv: 2211.12370.Google Scholar
De Concini, C. and Procesi, C., Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), 459494.10.1007/BF01589496CrossRefGoogle Scholar
Dirac, G. A., On rigid circuit graphs, Abh. Math. Semin. Univ. Hambg. 25 (1961), 7176.10.1007/BF02992776CrossRefGoogle Scholar
Dotsenko, V., Homotopy invariants for $\overline {\mathcal{M}}_{0,n}$ via Koszul duality, Invent. Math. 228 (2022), 77106.10.1007/s00222-021-01081-xCrossRefGoogle Scholar
Dotsenko, V. and Khoroshkin, A., Gröbner bases for operads, Duke Math. J. 153 (2010), 363396.10.1215/00127094-2010-026CrossRefGoogle Scholar
Feichtner, E.-M. and Kozlov, D. N., Incidence combinatorics of resolutions, Selecta Math. (N.S.) 10 (2004), 3760.10.1007/s00029-004-0298-1CrossRefGoogle Scholar
Feichtner, E. M. and Yuzvinsky, S., Chow rings of toric varieties defined by atomic lattices, Invent. Math. 155 (2004), 515536.10.1007/s00222-003-0327-2CrossRefGoogle Scholar
Hassett, B., Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), 316352.10.1016/S0001-8708(02)00058-0CrossRefGoogle Scholar
Kaufmann, R. M. and Ward, B. C., Feynman categories, Astérisque, 387 (Société Mathématique de France, 2017).Google Scholar
Losev, A. and Manin, Y., New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J. 48 (2000), 443472.10.1307/mmj/1030132728CrossRefGoogle Scholar
Losev, A. and Manin, Y., Extended modular operad, in Frobenius manifolds, Aspects of Mathematics, vol. 36 (Friedr. Vieweg, Wiesbaden, 2004), 181211.Google Scholar
MacLagan, D. and Sturmfels, B., Introduction to tropical geometry (American Mathematical Society, Providence, RI, 2015).Google Scholar
Manin, Y., Moduli stacks $\overline L_{g,S}$ , Mosc. Math. J. 4 (2004), 181198.10.17323/1609-4514-2004-4-1-181-198CrossRefGoogle Scholar
Mastroeni, M. and McCullough, J., Chow rings of matroids are Koszul, Math. Ann. 387 (2022), 18191851.10.1007/s00208-022-02506-5CrossRefGoogle Scholar
Orlik, P. and Terao, H., Arrangements of hyperplanes (Springer, Berlin–Heidelberg, 1991).Google Scholar
Pagaria, R. and Pezzoli, G. M., Hodge theory for polymatroids, Preprint (2021), arXiv: 2105.04214.Google Scholar
Postnikov, A., Reiner, V. and Williams, L., Faces of generalized permutohedra, Doc. Math. 13 (2008), 207273.10.4171/dm/248CrossRefGoogle Scholar
Stanley, R. P., Supersolvable lattices, Algebra Universalis 2 (1972), 197217.10.1007/BF02945028CrossRefGoogle Scholar
Tevelev, J., Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), 10871104.10.1353/ajm.2007.0029CrossRefGoogle Scholar
Wachs, M. L., Poset topology: tools and applications, Preprint (2006), arXiv:math/0602226.Google Scholar
Welsh, D. J. A., Matroid theory (Academic Press, London–New York, 1976).Google Scholar
Yuzvinskiĭ, S., Orlik-Solomon algebras in algebra and topology, Uspekhi Mat. Nauk 56 (2001), 87166.Google Scholar
Yuzvinsky, S., Small rational model of subspace complement, Trans. Amer. Math. Soc. 354 (2002), 19211945.10.1090/S0002-9947-02-02924-0CrossRefGoogle Scholar