Skip to main content
×
×
Home

Sur les $\ell$ -blocs de niveau zéro des groupes $p$ -adiques

  • Thomas Lanard (a1)
Abstract

Let $G$ be a $p$ -adic group that splits over an unramified extension. We decompose $\text{Rep}_{\unicode[STIX]{x1D6EC}}^{0}(G)$ , the abelian category of smooth level $0$ representations of $G$ with coefficients in $\unicode[STIX]{x1D6EC}=\overline{\mathbb{Q}}_{\ell }$ or $\overline{\mathbb{Z}}_{\ell }$ , into a product of subcategories indexed by inertial Langlands parameters. We construct these categories via systems of idempotents on the Bruhat–Tits building and Deligne–Lusztig theory. Then, we prove compatibilities with parabolic induction and restriction functors and the local Langlands correspondence.

Copyright
References
Hide All
[Art13] Arthur, J., The endoscopic classification of representations: orthogonal and symplectic groups, American Mathematical Society Colloquium Publications, vol. 61 (American Mathematical Society, Providence, RI, 2013); MR 3135650.
[BR03] Bonnafé, C. and Rouquier, R., Catégories dérivées et variétés de Deligne–Lusztig , Publ. Math. Inst. Hautes Études Sci. 97 (2003), 159; MR 2010739 (2004i:20079).
[Bor79] Borel, A., Automorphic L-functions , in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977), Part 2, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 2761; MR 546608.
[BT84] Bruhat, F. and Tits, J., Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée , Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197376; MR 756316 (86c:20042).
[CE04] Cabanes, M. and Enguehard, M., Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1 (Cambridge University Press, Cambridge, 2004), MR 2057756 (2005g:20067).
[Chi17] Chinello, G., Blocks of the category of smooth  -modular representations of  and its inner forms: reduction to level- , Preprint (2017), arXiv:1705.05261.
[Dat] Dat, J.-F., Simple subquotients of big parabolically induced representations of -adic groups, https://webusers.imj-prg.fr/∼jean-francois.dat/recherche/publis/subquotient.pdf.
[Dat05] Dat, J.-F., v-tempered representations of p-adic groups. I. l-adic case , Duke Math. J. 126 (2005), 397469; MR 2120114.
[Dat09] Dat, J.-F., Finitude pour les représentations lisses de groupes p-adiques , J. Inst. Math. Jussieu 8 (2009), 261333; MR 2485794.
[Dat16] Dat, J.-F., Equivalences of tame blocks for p-adic linear groups, Preprint (2016), arXiv:1603.07226.
[Dat17] Dat, J.-F., A functoriality principle for blocks of p-adic linear groups , in Around Langlands correspondences, Contemporary Mathematics, vol. 691 (American Mathematical Society, Providence, RI, 2017), 103131.
[DM94] Digne, F. and Michel, J., Groupes réductifs non connexes , Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 345406; MR 1272294.
[Hai14] Haines, T. J., The stable Bernstein center and test functions for Shimura varieties , in Automorphic forms and Galois representations, Vol. 2, London Mathematical Society Lecture Note Series, vol. 415 (Cambridge University Press, Cambridge, 2014), 118186; MR 3444233.
[HT01] Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001); With an appendix by Vladimir G. Berkovich. MR 1876802.
[Hel16] Helm, D., The Bernstein center of the category of smooth W (k)[GL n (F)]-modules , Forum Math. Sigma 4 (2016), e11; 98 MR 3508741.
[Hen00] Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique , Invent. Math. 139 (2000), 439455; MR 1738446.
[Kal16] Kaletha, T., Regular supercuspidal representations, Preprint (2016), arXiv:1602.03144.
[KMSW14] Kaletha, T., Minguez, A., Shin, S. W. and White, P.-J., Endoscopic classification of representations: inner forms of unitary groups, Preprint (2014), arXiv:1409.3731.
[LS16] Lust, J. and Stevens, S., On depth zero L-packets for classical groups, Preprint (2016), arXiv:1611.08421.
[Lus95] Lusztig, G., Classification of unipotent representations of simple p-adic groups , Int. Math. Res. Not. IMRN 1995 (1995), 517589; MR 1369407.
[Lus02] Lusztig, G., Classification of unipotent representations of simple p-adic groups. II , Represent. Theory 6 (2002), 243289; MR 1927955.
[MS10] Meyer, R. and Solleveld, M., Resolutions for representations of reductive p-adic groups via their buildings , J. Reine Angew. Math. 647 (2010), 115150; MR 2729360 (2011m:22031).
[Moe14] Moeglin, C., Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands , in Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemporary Mathematics, vol. 614 (American Mathematical Society, Providence, RI, 2014), 295336; MR 3220932.
[Mok15] Mok, C. P., Endoscopic classification of representations of quasi-split unitary groups , Mem. Amer. Math. Soc. 235 (2015); MR 3338302.
[Mou17a] Moussaoui, A., Centre de Bernstein dual pour les groupes classiques , Represent. Theory 21 (2017), 172246; MR 3694312.
[Mou17b] Moussaoui, A., Proof of the Aubert–Baum–Plymen–Solleveld conjecture for split classical groups , in Around Langlands correspondences, Contemporary Mathematics, vol. 691 (American Mathematical Society, Providence, RI, 2017), 257281; MR 3666057.
[MP96] Moy, A. and Prasad, G., Jacquet functors and unrefined minimal k-types , Comment. Math. Helv. 71 (1996), 98121.
[SS16] Sécherre, V. and Stevens, S., Block decomposition of the category of -modular smooth representations of GL n (F) and its inner forms , Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), 669709; MR 3503829.
[Sil80] Silberger, A. J., Special representations of reductive p-adic groups are not integrable , Ann. of Math. (2) 111 (1980), 571587.
[Spr74] Springer, T. A., Regular elements of finite reflection groups , Invent. Math. 25 (1974), 159198; MR 0354894.
[Spr79] Springer, T. A., Reductive groups , in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 327; MR 546587.
[Ste68] Steinberg, R., Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80 (American Mathematical Society, Providence, RI, 1968); MR 0230728.
[Tit79] Tits, J., Reductive groups over local fields , in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 2969; MR 546588 (80h:20064).
[Vig98] Vignéras, M.-F., Induced R-representations of p-adic reductive groups , Selecta Math. (N.S.) 4 (1998), 549623; MR 1668044.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed