Skip to main content Accessibility help
×
Home

A Witt Nadel vanishing theorem for threefolds

  • Yusuke Nakamura (a1) and Hiromu Tanaka (a2)

Abstract

In this paper, we establish a vanishing theorem of Nadel type for the Witt multiplier ideals on threefolds over perfect fields of characteristic larger than five. As an application, if a projective normal threefold over $\mathbb{F}_{q}$ is not klt and its canonical divisor is anti-ample, then the number of the rational points on the klt-locus is divisible by $q$ .

Copyright

References

Hide All
[Ax64]Ax, J., Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255261.
[BBE07]Berthelot, P., Bloch, S. and Esnault, H., On Witt vector cohomology for singular varieties, Compositio Math. 143 (2007), 363392.
[Bir16]Birkar, C., Existence of flips and minimal models for 3-folds in char p, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), 169212 (in English, with English and French summaries).
[CR12]Chatzistamatiou, A. and Rülling, K., Hodge–Witt cohomology and Witt-rational singularities, Doc. Math. 17 (2012), 663781.
[Esn03]Esnault, H., Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math. 151 (2003), 187191.
[Fuj17]Fujino, O., Foundations of the minimal model program, MSJ Memoirs, vol. 35 (Mathematical Society of Japan, 2017).
[GNT19]Gongyo, Y., Nakamura, Y. and Tanaka, H., Rational points on log Fano threefolds over a finite field, J. Eur. Math. Soc. (JEMS) 21 (2019), 37593795.
[HX15]Hacon, C. D. and Xu, C., On the three dimensional minimal model program in positive characteristic, J. Amer. Math. Soc. 28 (2015), 711744.
[Har77]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York–Heidelberg, 1977).
[HNT17]Hashizume, K., Nakamura, Y. and Tanaka, H., Minimal model program for log canonical threefolds in positive characteristic, Math. Res. Lett., to appear. Preprint (2017), arXiv:1711.10706v2.
[Ill79]Illusie, L., Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), 501661 (in French).
[Kat71]Katz, N. M., On a theorem of Ax, Amer. J. Math. 93 (1971), 485499.
[KMM87]Kawamata, Y., Matsuda, K. and Matsuki, K., Introduction to the minimal model problem, in Algebraic geometry, Sendai, 1985, Advanced Studies in Pure Mathematics, vol. 10 (North-Holland, Amsterdam, 1987), 283360.
[Kol96]Kollár, J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge [Results in Mathematics and Related Areas, 3rd Series]. A Series of Modern Surveys in Mathematics, vol. 32 (Springer, Berlin, 1996).
[Kol13]Kollár, J., Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200 (Cambridge University Press, Cambridge, 2013); with a collaboration of Sándor Kovács.
[KM98]Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).
[Laz04]Lazarsfeld, R., Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge [Results in Mathematics and Related Areas, 3rd Series]. A Series of Modern Surveys in Mathematics, vol. 49 (Springer, Berlin, 2004).
[Lip69]Lipman, J., Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195279; MR 0276239.
[Poo04]Poonen, B., Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), 10991127.
[Ray78]Raynaud, M., Contre-exemple au ‘vanishing theorem’ en caractéristique p > 0, Tata Institute of Fundamental Research Studies in Mathematics, vol. 8 (Springer, Berlin–New York, 1978), 273278.
[Tan14]Tanaka, H., Minimal models and abundance for positive characteristic log surfaces, Nagoya Math. J. 216 (2014), 170.
[Tan15]Tanaka, H., The X-method for klt surfaces in positive characteristic, J. Algebraic Geom. 24 (2015), 605628.
[Tan16]Tanaka, H., Abundance theorem for semi log canonical surfaces in positive characteristic, Osaka J. Math. 53 (2016), 535566; MR 3492812.
[Tan18a]Tanaka, H., Behavior of canonical divisors under purely inseparable base changes, J. Reine Angew. Math. 744 (2018), 237264; MR 3871445.
[Tan18b]Tanaka, H., Minimal model program for excellent surfaces, Ann. Inst. Fourier (Grenoble) 68 (2018), 345376, (in English, with English and French summaries); MR 3795482.
[Wei94]Weibel, C. A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38 (Cambridge University Press, Cambridge, 1994); MR 1269324.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

A Witt Nadel vanishing theorem for threefolds

  • Yusuke Nakamura (a1) and Hiromu Tanaka (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed