Skip to main content
×
×
Home

Application of autoencoders in cyber-empathic design

  • Dipanjan Ghosh (a1), Andrew Olewnik (a1) and Kemper Lewis (a1)
Abstract

A critical task in product design is mapping information from the consumer space to the design space. This process is largely dependent on the designer to identify and relate psychological and consumer level factors to engineered product attributes. In this way, current methodologies lack provision to test a designer’s cognitive reasoning and may introduce bias through the mapping process. Prior work on Cyber-Empathic Design (CED) supports this mapping by relating user–product interaction data from embedded sensors to psychological constructs. To understand consumer perceptions, a network of psychological constructs is developed using Structural Equation Modeling for parameter estimation and hypothesis testing, making the framework falsifiable in nature. The focus of this technical brief is toward automating CED through unsupervised deep learning to extract features from raw data. Additionally, Partial Least Square Structural Equation Modeling is used with extracted sensor features as inputs. To demonstrate the effectiveness of the approach a case study involving sensor-integrated shoes compares three models – a survey-only model (no sensor data), the existing CED approach with manually extracted sensor features, and the proposed deep learning based CED approach. The deep learning based approach results in improved model fit.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Application of autoencoders in cyber-empathic design
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Application of autoencoders in cyber-empathic design
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Application of autoencoders in cyber-empathic design
      Available formats
      ×
Copyright
Distributed as Open Access under a CC-BY 4.0 license (http://creativecommons.org/licenses/by/4.0/)
Corresponding author
Email address for correspondence: olewnik@buffalo.edu
References
Hide All
Anderson, J. & Gerbing, D. 1988 Structural equation modeling in practice: a review and recommended two-step approach. Psychological Bulletin - PSYCHOL BULL 103 (3), 411423. doi:10.1037/0033-2909.103.3.411.
Becker, J.-M., Klein, K. & Wetzels, M. 2012 Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models. Long Range Planning 45 (5), 359394.
Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K. & Le, Q. V. 2012 Large scale distributed deep networks. In Advances in Neural Information Processing Systems, pp. 12231231. Curran Associates, Inc. Available: http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf.
Ghosh, D., Olewnik, A., Kim, J., Lewis, K. & Lakshmanan, A. 2017a Cyber-empathic design – a data driven framework for product design. ASME Journal of Mechanical Design 139 (9), 09140. doi:10.1115/1.4036780.
Ghosh, D., Olewnik, A. & Lewis, K. 2017b Application of feature-learning methods towards product usage context identification and comfort prediction. ASME Journal of Computing and Information Science in Engineering 18 (1), 011004. doi:10.1115/1.4037435.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. & Bengio, Y. 2014 Generative adversarial nets. In Advances in Neural Information Processing Systems 27 (ed. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.), pp. 26722680. Curran Associates, Inc.
Hadgu, A. T., Nigam, A. & Diaz-Aviles, E. 2015 Large-scale learning with AdaGrad on Spark. In 2015 IEEE International Conference on Big Data (Big Data), pp. 28282830. doi:10.1109/BigData.2015.7364091.
Hair, J. F., Ringle, C. M. & Sarstedt, M. 2011 PLS-SEM: indeed, a silver bullet. Journal of Marketing Theory and Practice 19 (2), 139152.
Hair, J. F. Jr, Hult, G. T. M., Ringle, C. & Sarstedt, M. 2016 A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications.
Hinton, G. E. & Zemel, R. S. 1994 Autoencoders, minimum description length, and Helmholtz free energy. In Advances in Neural Information Processing Systems 6 (ed. Cowan, J. D., Tesauro, G. & Alspector, J.), pp. 310. Morgan-Kaufmann.
Krizhevsky, A. & Hinton, G. E. 2011 Using very deep autoencoders for content-based image retrieval. In 19th European Symposium on Artificial Neural Networks, Bruges, Belgium, April 27–29. Available: https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2011.
Lee, H., Grosse, R., Ranganath, R. & Ng, A. Y. 2009a Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th International Conference on Machine Learning, pp. 609616. Montreal, Quebec, Canda. June 14–18. doi:10.1145/1553374.1553453.
Lee, H., Largman, Y., Pham, P. & Ng, A. Y. 2009b Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances in Neural Information Processing Systems 22 (ed. Bengio, Y., Schuurmans, D., Lafferty, J. D., Williams, C. K. I. & Culotta, A.), pp. 10961104. Curran Associates, Inc. Available:https://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.
Lee, H., Grosse, R., Ranganath, R. & Ng, A. Y. 2011 Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM 54 (10), 95103. doi:10.1145/2001269.2001295.
Norouzi, M., Ranjbar, M. & Mori, G. 2009 Stacks of convolutional Restricted Boltzmann Machines for shift-invariant feature learning. In IEEE Conference Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2009.5206577.
Peng, D. X. & Lai, F. 2012 Using partial least squares in operations management research: a practical guideline and summary of past research. Journal of Operations Management 30 (6), 467480.
Ringle, C. M., Sarstedt, M. & Straub, D. 2012 A critical look at the use of PLS-SEM in MIS quarterly. MIS Quarterly (MISQ) 36 (1), pp. iii–xiv.
Sanchez, G. & Trinchera, L.2012 PLSPM: Partial Least Squares Data Analysis Methods. R Package Version 0.2-2. http://CRAN. R-Project. Org/package= Plspm.
Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. 2005 PLS path modeling. Computational Statistics & Data Analysis 48 (1), 159205. doi:10.1016/j.csda.2004.03.005.
Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P. A. 2008 Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, pp. 10961103. Helsinki, Finland, July 5–9. doi:10.1145/1390156.1390294.
Wong, K. K.-K. 2013 Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin 24 (1), 132.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Design Science
  • ISSN: -
  • EISSN: 2053-4701
  • URL: /core/journals/design-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed