Skip to main content Accessibility help
×
Home

Computer Aided Internal Optimisation (CAIO) method for fibre trajectory optimisation: A deep dive to enhance applicability

  • Harald Voelkl (a1), Michael Franz (a1), Daniel Klein (a1) and Sandro Wartzack (a1)

Abstract

The computer aided internal optimisation (CAIO) method produces an optimised fibre layout for parts made from fibre-reinforced plastics (FRP), starting from an initial shell geometry and a given load case. Its main principle is iterative reduction of shear stresses by aligning fibre main axes with principal normal stress trajectories. Previous contributions, ranging from CAIO’s introduction over testing to extensions towards multi-layer FRP laminates, highlighted its lightweight design potential. For its application to laminate design approaches, alterations have been proposed; however, questions remain open. These questions include which convergence criteria to use, how to handle ambiguous principle normal stress trajectories, influence of using multi-layer CAIO optimisation instead of the initial single-layer CAIO and how dire consequences of slightly deviating fibre orientations from the optimised trajectories are. These challenges are discussed in depth and guidelines are given. This paper is an enhanced version of a distinguished contribution at the first symposium ‘Lightweight Design in Product Development’, Zurich (June 14–15, 2018).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Computer Aided Internal Optimisation (CAIO) method for fibre trajectory optimisation: A deep dive to enhance applicability
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Computer Aided Internal Optimisation (CAIO) method for fibre trajectory optimisation: A deep dive to enhance applicability
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Computer Aided Internal Optimisation (CAIO) method for fibre trajectory optimisation: A deep dive to enhance applicability
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: voelkl@mfk.fau.de

References

Hide All
Asp, L. E. 2013 Multifunctional composite materials for energy storage in structural load paths. Plastics, Rubber and Composites 42 (4), 144149.
Bardy, J., Legrand, X. & Crosky, A. 2012 Configuration of a genetic algorithm used to optimise fibre steering in composite laminates. Composite Structures 94 (6), 20482056.
Bruyneel, M. & Fleury, C. 2002 Composite structures optimization using sequential convex programming. Advances in Engineering Software 33 (7–10), 697711.
Bucher, C. 2007 Basic concepts for robustness evaluation using stochastic analysis. In Efficient Methods for Robust Design and Optimisation – EUROMECH Colloquium 482 (ed. Bletzinger, K.-U., Bucher, C., Duddeck, F., Matthies, H. & Meyer, M.).
Capezzuto, F., Ciampa, F., Carotenuto, G., Meo, M., Milella, E. & Nicolais, F. 2010 A smart multifunctional polymer nanocomposites layer for the estimation of low-velocity impact damage in composite structures. Composite Structures 92 (8), 19131919.
Endruweit, A., Long, A. C., Robitaille, F. & Rudd, C. D. 2006 Influence of stochastic fibre angle variations on the permeability of bi-directional textile fabrics. Composites Part A: Applied Science and Manufacturing 37 (1), 122132.
Gea, H. C. & Luo, J. H. 2004 On the stress-based and strain-based methods for predicting optimal orientation of orthotropic materials. Structural and Multidisciplinary Optimization 26 (3–4), 229234.
Kelly, D. W., Reidsema, C. A. & Lee, M. C. 2011 An algorithm for defining load paths and a load bearing topology in finite element analysis. Engineering Computations 28 (2), 196214.
Klein, D.2017 Ein simulationsbasierter Ansatz für die beanspruchungsgerechte Auslegung endlosfaserverstärkter Faserverbundstrukturen. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg.
Klein, D., Malezki, W. & Wartzack, S. 2015 Introduction of a computational approach for the design of composite structures at the early embodiment design stage. In Proceedings of the 20th International Conference on Engineering Design (ICED15) (ed. Weber, C., Husung, S., Cascini, G., Cantamessa, M., Marjanovic, D. & Rotini, F.), pp. 105115.
Klein, D., Witzgall, C. & Wartzack, S. 2014 A novel approach for the evaluation of composite suitability of lightweight structures at early design stages. In International Design Conference - DESIGN 2014 (ed. Marjanović, D., Štorga, M., Pavković, N. & Bojčetić, N.), pp. 10931104.
Knops, M. 2008 Analysis of Failure in Fiber Polymer Laminates: The Theory of Alfred Puck, corr. 2. print edn.Springer.
Kussmaul, R., Könen, H., Türk, D., Spierings, A. B., Klahn, C., Ermanni, P., Zogg, M. & Meboldt, M. 2016 Additive Manufacturing with Composites for Integrated Aircraft Structures. Society for the Advancement of Material and Process Engineering.
Kussmaul, R., Zogg, M. & Ermanni, P. 2018 An optimality criteria-based algorithm for efficient design optimization of laminated composites using concurrent resizing and scaling. Structural and Multidisciplinary Optimization 58 (2), 735750.
Luo, J. H. & Gea, H. C. 1998 Optimal orientation of orthotropic materials using an energy based method. Structural Optimization 15, 230236.
Mattheck, C. 1997 Design in der Natur und nach der Natur. Wirtschaftsingenieur 40, 1014.
Mattheck, C. & Tesari, I. 2000 Design in nature. In Development and Application of Computer Techniques to Environmental Studies VII, vol. 4 // 41. WIT Press and WIT.
Mesogitis, T. S., Skordos, A. A. & Long, A. C. 2014 Uncertainty in the manufacturing of fibrous thermosetting composites: a review. Composites Part A: Applied Science and Manufacturing 57, 6775.
Michaeli, W., Huybrechts, D. & Wegener, M. 1995 Dimensionieren mit Faserverbundkunststoffen: Einführung und praktische Hilfen. Hanser.
Most, T. & Will, J. 2008 Meta-model of optimal prognosis – an automatic approach for variable reduction and optimal meta-model selection. In Proceedings of the Weimarer Optimierungs- und Stochastiktage 5.0.
Plischke, E. 2010 An effective algorithm for computing global sensitivity indices (easi). Reliability Engineering & System Safety 95 (4), 354360.
Plischke, E., Borgonovo, E. & Smith, C. L. 2013 Global sensitivity measures from given data. European Journal of Operational Research 226 (3), 536550.
Reuschel, D. & Mattheck, C. 1999 Optimization of fiber arrangement with CAIO (computer aided internal optimization) and application to tensile samples. Transactions of the Built Environment 40 (37), 247255.
Reuschel, J. D.1999 Untersuchung der Faseranordnung natürlicher Faserverbunde und Übertragung der Ergebnisse auf technische Bauteile mit Hilfe der Finite-Elemente-Methode, Dissertation, Forschungszentrum Karlsruhe, Karlsruhe.
Schleich, B. & Wartzack, S. 2013 How to determine the influence of geometric deviations on elastic deformations and the structural performance? Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 227 (5), 754764.
Schürmann, H. 2007 Konstruieren mit Faser-Kunststoff-Verbunden, 2 edn.Springer.
Spickenheuer, A.2014 Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement. PhD thesis, Technische Universität Dresden, Dresden.
Vajna, S., Weber, C., Zeman, K., Hehenberger, P., Gerhard, D. & Wartzack, S. 2018 CAx für Ingenieure: Eine praxisbezogene Einführung, 3, vollständig neu bearbeitete auflage edn.Springer Vieweg.
Völkl, H., Franz, M. & Wartzack, S. 2018a A case study on established and new approaches for optimized laminate design. In ECCM18 - 18th European Conference on Composite Materials, pp. 18.
Völkl, H., Franz, M. & Wartzack, S. 2018b Computer Aided Internal Optimization (CAIO) method for fiber trajectory optimization: enhancing applicability. In Book of Abstracts. Symposium Lightweight Design in Product Development (ed. Ermanni, P., Meboldt, M., Wartzack, S., Krause, D. & Zogg, M.). CMASLab, ETH Zurich.
Völkl, H., Klein, D., Franz, M. & Wartzack, S. 2018 An efficient bionic topology optimization method for transversely isotropic materials. Composite Structures 204, 359367.
Walker, M. & Hamilton, R. 2006 A technique for optimally designing fibre-reinforced laminated plates under in-plane loads for minimum weight with manufacturing uncertainties accounted for. Engineering with Computers 21 (4), 282288.

Keywords

Computer Aided Internal Optimisation (CAIO) method for fibre trajectory optimisation: A deep dive to enhance applicability

  • Harald Voelkl (a1), Michael Franz (a1), Daniel Klein (a1) and Sandro Wartzack (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.