Skip to main content
×
×
Home

The generation of problem-focussed patent clusters: a comparative analysis of crowd intelligence with algorithmic and expert approaches

  • Andrew Wodehouse, Gokula Vasantha, Jonathan Corney, Ross Maclachlan and Ananda Jagadeesan...
Abstract

This paper presents a new crowdsourcing approach to the construction of patent clusters, and systematically benchmarks it against previous expert and algorithmic approaches. Patent databases should be rich sources of inspiration which could lead engineering designers to novel solutions for creative problems. However, the sheer volume and complexity of patent information means that this potential is rarely realised. Rather than the keyword driven searches common in commercial systems, designers need tools that help them to understand patents in the context of the problem they are considering. This paper presents an approach to address this problem by using crowd intelligence for effective generation of patent clusters at lower cost and with greater rationale. A systematic study was carried out to compare the crowd’s efficiency with both expert and algorithmic patent clusters, with the results indicating that the crowd was able to create 80% more patent pairs with appropriate rationale.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The generation of problem-focussed patent clusters: a comparative analysis of crowd intelligence with algorithmic and expert approaches
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The generation of problem-focussed patent clusters: a comparative analysis of crowd intelligence with algorithmic and expert approaches
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The generation of problem-focussed patent clusters: a comparative analysis of crowd intelligence with algorithmic and expert approaches
      Available formats
      ×
Copyright
Distributed as Open Access under a CC-BY 4.0 license (http://creativecommons.org/licenses/by/4.0/)
Corresponding author
Email address for correspondence: andrew.wodehouse@strath.ac.uk
References
Hide All
Abbas, A., Zhang, L. & Khan, S. U. 2014 A literature review on the state-of-the-art in patent analysis. World Patent Information 37, 313.
Atzmüller, P. & Landl, G. 2009 Semantic enrichment and added metadata – examples of efficient usage in an industrial environment. World Patent Information 31 (2), 8996.
Burnap, A., Ren, Y., Gerth, R., Papazoglou, G., Gonzalez, R. & Papalambros, P. Y. 2015 When crowdsourcing fails: a study of expertise on crowdsourced design evaluation. Journal of Mechanical Design, Transactions of the ASME 137 (3), doi:10.1115/1.4029065.
Choi, S., Park, H., Kang, D., Lee, J. Y. & Kim, K. 2012 An SAO-based text mining approach to building a technology tree for technology planning. Expert Systems with Applications 39 (13), 1144311455.
Dereli, T. & Durmuşoğlu, A. 2009 Classifying technology patents to identify trends: applying a fuzzy-based clustering approach in the Turkish textile industry. Technology in Society 31 (3), 263272.
Dražić, M., Kukolj, D., Vitas, M., Pokrić, M., Manojlović, S. & Tekić, Z.2013 Effectiveness of Text Processing in Patent Documents Visualization. Paper presented at the 2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY).
Fan, C. Y., Lai, M., Huang, T. & Huang, C.2011 Applying K-means Clustering and Technology Map in Asia Pacific-Semiconductors Industry Analysis. Paper presented at the Industrial Engineering and Engineering Management (IEEM), 2011 IEEE International Conference on.
Fantoni, G., Apreda, R., Dell’Orletta, F. & Monge, M. 2013 Automatic extraction of function–behaviour–state information from patents. Advanced Engineering Informatics 27 (3), 317334.
Fu, K., Cagan, J. & Kotovsky, K.2011 A Methodology for Discovering Structure in Design Databases. Paper presented at the DS 68-6: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 6: Design Information and Knowledge, Lyngby/Copenhagen, Denmark, 15–19.08. 2011.
Fu, K., Cagan, J., Kotovsky, K. & Wood, K. 2013a Discovering structure in design databases through functional and surface based mapping. Journal of Mechanical Design 135 (3), 031006.
Fu, K., Chan, J., Schunn, C., Cagan, J. & Kotovsky, K. 2013b Expert representation of design repository space: a comparison to and validation of algorithmic output. Design Studies 34 (6), 729762.
Fu, K., Dilmore, J., Cagan, J. & Dougherty, C. H. Jr. 2013c Using Design Database Structures to Characterize Freedom-to-Operate in a Design Space: A Legal Case Study. Paper presented at the DS 75-1: Proceedings of the 19th International Conference on Engineering Design (ICED13), Design for Harmonies, Vol. 1: Design Processes, Seoul, Korea, 19–22.08. 2013.
Fu, K., Murphy, J., Yang, M., Otto, K., Jensen, D. & Wood, K. 2014 Design-by-analogy: experimental evaluation of a functional analogy search methodology for concept generation improvement. Research in Engineering Design 26 (1), 7795.
Huang, C.-Y., Lin, Y.-H. & Tsai, P.-F. 2015 Developing a rework process for underfilled electronics components via integration of TRIZ and cluster analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology 5 (3), 422438.
Igami, M. 2008 Exploration of the evolution of nanotechnology via mapping of patent applications. Scientometrics 77 (2), 289308.
Ipeirotis, P.2010 Demographics of Mechanical Turk. NYU Center for Digital Economy Research Working Paper CeDER-10-01, New York University.
Jeong, C. & Kim, K. 2014 Creating patents on the new technology using analogy-based patent mining. Expert Systems with Applications 41 (8), 36053614.
Jin, G., Jeong, Y. & Yoon, B. 2015 Technology-driven roadmaps for identifying new product/market opportunities: use of text mining and quality function deployment. Advanced Engineering Informatics 29 (1), 126138.
Jun, S., Park, S.-S. & Jang, D.-S. 2014 Document clustering method using dimension reduction and support vector clustering to overcome sparseness. Expert Systems with Applications 41 (7), 32043212.
Kim, J.-M. & Jun, S. 2015 Graphical causal inference and copula regression model for apple keywords by text mining. Advanced Engineering Informatics 29 (4), 918929.
Kim, Y. G., Suh, J. H. & Park, S. C. 2008 Visualization of patent analysis for emerging technology. Expert Systems with Applications 34 (3), 18041812.
Kitamura, Y., Kashiwase, M., Fuse, M. & Mizoguchi, R. 2004 Deployment of an ontological framework of functional design knowledge. Advanced Engineering Informatics 18 (2), 115127.
Kukolj, D., Tekic, Z., Nikolic, L., Panjkov, Z., Pokric, M., Drazic, M. & Nemet, D.2012 Comparison of Algorithms for Patent Documents Clusterization. Paper presented at the MIPRO, 2012 Proceedings of the 35th International Convention.
Lee, C., Kang, B. & Shin, J. 2015 Novelty-focused patent mapping for technology opportunity analysis. Technological Forecasting and Social Change 90, 355365.
Lee, S., Yoon, B. & Park, Y. 2009 An approach to discovering new technology opportunities: keyword-based patent map approach. Technovation 29 (6–7), 481497.
Li, Z., Atherton, M. & Harrison, D. 2014 Identifying patent conflicts: TRIZ-led patent mapping. World Patent Information 39, 1123.
Luo, J. 2015 The united innovation process: integrating science, design, and entrepreneurship as sub-processes. Design Science 1, doi:10.1017/dsj.2015.2.
Moehrle, M. G. & Passing, F. 2016 Applying an anchor based patent mapping approach: basic conception and the case of carbon fiber reinforcements. World Patent Information 45, 19.
Moser, P. 2013 Patents and innovation: evidence from economic history. The Journal of Economic Perspectives 27 (1), 2344.
Murphy, J., Fu, K., Otto, K., Yang, M., Jensen, D. & Wood, K. 2014 Function based design-by-analogy: a functional vector approach to analogical search. Journal of Mechanical Design 136 (10), 101102.
Park, H., Kim, K., Choi, S. & Yoon, J. 2013 A patent intelligence system for strategic technology planning. Expert Systems with Applications 40 (7), 23732390.
Park, H., Yoon, J. & Kim, K. 2011 Identifying patent infringement using SAO based semantic technological similarities. Scientometrics 90 (2), 515529.
Ross, J., Irani, L., Silberman, M. S., Zaldivar, A. & Tomlinson, B.2010 Who are the Crowdworkers?: Shifting Demographics in Mechanical Turk. Paper presented at the CHI ’10 Extended Abstracts on Human Factors in Computing Systems, Atlanta, Georgia, USA.
Ryley, J. F., Saffer, J. & Gibbs, A. 2008 Advanced document retrieval techniques for patent research. World Patent Information 30 (3), 238243.
Segev, A. & Kantola, J. 2012 Identification of trends from patents using self-organizing maps. Expert Systems with Applications 39 (18), 1323513242.
Spangler, S., Ying, C., Kreulen, J., Boyer, S., Griffin, T., Alba, A. & Yan, S. 2011 Exploratory analytics on patent data sets using the SIMPLE platform. World Patent Information 33 (4), 328339.
Suh, J. H. & Park, S. C.2006 A New Visualization Method for Patent Map: Application to Ubiquitous Computing Technology. Paper presented at the International Conference on Advanced Data Mining and Applications.
Suh, J. H. & Park, S. C. 2009 Service-oriented Technology Roadmap (SoTRM) using patent map for R&D strategy of service industry. Expert Systems with Applications 36 (3), 67546772.
Tekic, Z., Kukolj, D., Nikolic, L., Drazic, M., Pokric, M., Vitas, M. & Nemet, D.2012 PSALM-Tool for Business Intelligence. Paper presented at the MIPRO, 2012 Proceedings of the 35th International Convention.
Trappey, A. J., Trappey, C. V., Hsu, F.-C. & Hsiao, D. W. 2009 A fuzzy ontological knowledge document clustering methodology. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39 (3), 806814.
Trappey, C. V., Trappey, A. J. C., Peng, H.-Y., Lin, L.-D. & Wang, T.-M. 2014 A knowledge centric methodology for dental implant technology assessment using ontology based patent analysis and clinical meta-analysis. Advanced Engineering Informatics 28 (2), 153165.
Trappey, C. V., Trappey, A. J. C. & Wu, C.-Y. 2010 Clustering patents using non-exhaustive overlaps. Journal of Systems Science and Systems Engineering 19 (2), 162181.
Trappey, C. V., Wu, H.-Y., Taghaboni-Dutta, F. & Trappey, A. J. C. 2011 Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics 25 (1), 5364.
Vandevenne, D., Verhaegen, P., Dewulf, S. & Duflou, J. 2016 SEABIRD: scalable search for systematic biologically inspired design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 30 (1), 7895.
Vasantha, G., Corney, J., Maclachlan, R. & Wodehouse, A.2016 The Analysis and Presentation of Patents to Support Engineering Design. Paper presented at the 7th International Conference on Design Computing and Cognition (DCC16), Chicago, USA.
Verhaegen, P.-A., Peeters, J., Vandevenne, D., Dewulf, S. & Duflou, J. R. 2011 Effectiveness of the PAnDA ideation tool. Procedia Engineering 9, 6376.
Widodo, A. & Budi, I.2011 Clustering Patent Document in the Field of ICT (Information & Communication Technology). Paper presented at the 2011 International Conference on Semantic Technology and Information Retrieval.
World Intellectual Property Organization2016 WIPO IP Facts and Figures 2016. Retrieved from Geneva, Switzerland. Available at: http://www.wipo.int/edocs/pubdocs/en/wipo_pub_943_2016.pdf.
Xu, C., Zhiyong, P. & Bin, L.2013 Technology and Effect Matrix for Patent Clustering. Paper presented at the Web Information System and Application Conference (WISA), 2013 10th.
Yan, M. 1993 Representing design knowledge as a network of function, behaviour and structure. Design Studies 14 (3), 314329.
Yoon, B. & Park, Y. 2004 A text-mining-based patent network: analytical tool for high-technology trend. The Journal of High Technology Management Research 15 (1), 3750.
Yoon, B. U., Yoon, C. B. & Park, Y. T. 2002 On the development and application of a self-organizing feature map-based patent map. R&D Management 32 (4), 291300.
Yoon, J., Park, H. & Kim, K. 2012 Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis. Scientometrics 94 (1), 313331.
Zhang, L.-w. & Zhu, D.-h.2010 Research of Technical Development Trend and Hot Points Based on Text Mining. Paper presented at the 2nd International Conference on Information Engineering and Computer Science (ICIECS).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Design Science
  • ISSN: -
  • EISSN: 2053-4701
  • URL: /core/journals/design-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed