Skip to main content Accessibility help
×
Home

The neural correlates of ideation in product design engineering practitioners

  • L. Hay (a1), A. H. B. Duffy (a1), S. J. Gilbert (a2), L. Lyall (a3), G. Campbell (a4), D. Coyle (a5) and M. A. Grealy (a4)...

Abstract

In product design engineering (PDE), ideation involves the generation of technical behaviours and physical structures to address specific functional requirements. This differs from generic creative ideation tasks, which emphasise functional and technical considerations less. To advance knowledge about the neural basis of PDE ideation, we present the first fMRI study on professional product design engineers practising in industry. We aimed to explore brain activation during ideation, and compare activation in open-ended and constrained tasks. Imagery manipulation tasks were contrasted with ideation tasks in a sample of 29 PDE professionals. The key findings were: (1) PDE ideation is associated with greater activity in left cingulate gyrus; (2) there were no significant differences between open-ended and constrained tasks; and (3) a preliminary association with activity in the right superior temporal gyrus was also observed. The results are consistent with existing fMRI work on generic creative ideation, suggesting that PDE ideation may share a number of similarities at the neural level. Future work includes: functional connectivity analysis of open-ended and constrained ideation to further investigate potential differences; investigating the effects of aspects of design expertise/training on processing; and the use of novelty measures directly linked to the designer’s internal processing in fMRI analysis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The neural correlates of ideation in product design engineering practitioners
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The neural correlates of ideation in product design engineering practitioners
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The neural correlates of ideation in product design engineering practitioners
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: laura.hay@strath.ac.uk

References

Hide All
Abraham, A. 2013 The promises and perils of the neuroscience of creativity. Front. Hum. Neurosci. 7, 19.
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., Stark, R., Windmann, S. & Hermann, C. 2012 Creativity and the brain: uncovering the neural signature of conceptual expansion. Neuropsychologia 50, 19061917, https://doi.org/10.1016/j.neuropsychologia.2012.04.015.
Alexiou, K., Zamenopoulos, T., Johnson, J. H. & Gilbert, S. J. 2009 Exploring the neurological basis of design cognition using brain imaging: some preliminary results. Des. Stud. 30, 623647.
Amiez, C., Joseph, J. P. & Procyk, E. 2005 Anterior cingulate error-related activity is modulated by predicted reward. Eur. J. Neurosci. 21, 34473452, https://doi.org/10.1111/j.1460-9568.2005.04170.x.
Barbaresi, P., Fabri, M. & Mensà, E. 2014 Characterization of NO-producing neurons in the rat corpus callosum. Brain Behav. 4, 317336, https://doi.org/10.1002/brb3.218.
Barto, A., Mirolli, M. & Baldassarre, G. 2013 Novelty or surprise? Front. Psychol. 4, 907.
Beaty, R. E., Benedek, M., Barry Kaufman, S. & Silvia, P. J. 2015 Default and executive network coupling supports creative idea production. Nat. Sci. Reports 5, 114.
Beaty, R. E., Benedek, M., Silvia, P. J. & Schacter, D. L. 2016 Creative cognition and brain network dynamics. Trends Cogn. Sci. 20, 8795.
Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, T. R. & Kane, M. J. et al. 2018 Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl Acad. Sci. USA 115, 10871092.
Bechtereva, N. P., Korotkov, A. D., Pakhomov, S. V., Roudas, M. S., Starchenko, M. G. & Medvedev, S. V. 2004 PET study of brain maintenance of verbal creative activity. Int. J. Psychophysiol. 53, 1120, https://doi.org/10.1016/j.ijpsycho.2004.01.001.
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F. & Neubauer, A. C. 2013 To create or to recall? Neural mechanisms underlying the generation of creative new ideas. Neuroimage 88, 125133.
Benedek, M., Schües, T., Beaty, R. E., Jauk, E., Koschutnig, K., Fink, A. & Neubauer, A. C. 2018 To create or to recall original ideas: brain processes associated with the imagination of novel object uses. Cortex 99, 93102.
Boccia, M., Piccardi, L., Palermo, L., Nori, R. & Palmiero, M. 2015 Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Front. Psychol. 6, 112, https://doi.org/10.3389/fpsyg.2015.01195.
Boeijen, A. v., Daalhuizen, J., Zijlstra, J. & van der Schoor, R. 2013 Delft Design Guide: Design Strategies and Methods. BIS Publishers.
Botvinick, M. M., Cohen, J. D. & Carter, C. S. 2004 Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539546, https://doi.org/10.1016/j.tics.2004.10.003.
Brown, J. W. 2009 Conflict effects without conflict in anterior cingulate cortex: multiple response effects and context specific representations. Neuroimage 47, 334341, https://doi.org/10.1016/j.neuroimage.2009.04.034.
Chan, J., Fu, K., Schunn, C., Cagan, J., Wood, K. & Kotovsky, K. 2011 On the benefits and pitfalls of analogies for innovative design: ideation performance based on analogical distance, commonness, and modality of examples. J. Mech. Des. 133, 081004.
Chandrasekera, T., Vo, N. & D’Souza, N. 2013 The effect of subliminal suggestions on Sudden Moments of Inspiration (SMI) in the design process. Des. Stud. 34, 193215.
Chou, Y.-Y.J. & Tversky, B. 2017 Finding creative new ideas: human-centric mindset overshadows mind-wandering. In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, London, UK, pp. 17761781.
Chusilp, P. & Jin, Y. 2006 Impact of mental iteration on concept generation. J. Mech. Des. 128, 14.
Dietrich, A. 2004 The cognitive neuroscience of creativity. Psychon. Bull. Rev. 11, 10111026.
Dietrich, A. 2019 Where in the brain is creativity: a brief account of a wild-goose chase. Curr. Opin. Behav. Sci. 27, 3639.
Dorst, K. & Cross, N. 2001 Creativity in the design process: co-evolution of problem – solution. Des. Stud. 22, 425437.
Duffy, A., Hay, L., Grealy, M. & Vuletic, T.(in press) ImagineD – A vision for cognitive driven creative design, in: Proceedings of 30th Anniversary Heron Island Conference on Computational and Cognitive Models of Creative Design (HI19), 15th–18th December 2019.
Ellamil, M., Dobson, C., Beeman, M. & Christoff, K. 2012 Evaluative and generative modes of thought during the creative process. Neuroimage 59, 17831794.
Finke, R. A., Ward, T. B. & Smith, S. M. 1992 Creative Cognition: Theory, Research, and Applications. MIT Press.
Fiorineschi, L., Frillici, F. S. & Rotini, F. 2018a A-posteriori novelty assessments for sequential design sessions. In International Design Conference – Design 2018, pp. 10791090.
Fiorineschi, L., Frillici, F. S. & Rotini, F. 2018b Issues related to missing attributes in a-posteriori novelty assessments. In International Design Conference – Design 2018, pp. 10671078.
Gawryluk, J. R., Mazerolle, E. L., Beyea, S. D. & D’Arcy, R. C. N. 2014a Functional MRI activation in white matter during the symbol digit modalities test. Front. Hum. Neurosci. 8, 18, https://doi.org/10.3389/fnhum.2014.00589.
Gawryluk, J. R., Mazerolle, E. L. & D’Arcy, R. C. N. 2014b Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front. Neurosci., https://doi.org/10.3389/fnins.2014.00239.
Gilbert, S. J., Zamenopoulos, T., Alexiou, K. & Johnson, J. H. 2010 Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: an fMRI study. Brain Res. 1312, 7988.
Goel, V. 2014 Creative brains: designing in the real world. Front. Hum. Neurosci. 8, 114.
Goff, K. & Torrance, E. P.2002 Abbreviated Torrance Test for Adults Manual.
Goucher-Lambert, K., Moss, J. & Cagan, J. 2017 Inside the mind: using neuroimaging to understand moral product preference judgments involving sustainability. ASME J. Mech. Des. 139, 041103.
Goucher-Lambert, K., Moss, J. & Cagan, J. 2019 A neuroimaging investigation of design ideation with and without inspirational stimuli—understanding the meaning of near and far stimuli. Des. Stud. 60, 138.
Hay, L., Duffy, A. & Grealy, M. 2019a The novelty perspectives framework: a new conceptualisation of novelty for cognitive design studies. In Proceedings of the Design Society: International Conference on Engineering Design, pp. 389398. Cambridge University Press.
Hay, L., Duffy, A. H. B., Grealy, M., Tahsiri, M., McTeague, C. & Vuletic, T. 2019b A novel systematic approach for analysing exploratory design ideation. Journal of Engineering Design 123, https://doi.org/10.1080/09544828.2019.1662381.
Hay, L., Duffy, A. H. B., McTeague, C., Pidgeon, L. M., Vuletic, T. & Grealy, M. 2017a A systematic review of protocol studies on conceptual design cognition: design as search and exploration. Des. Sci. 3, 136.
Hay, L., Duffy, A. H. B., McTeague, C., Pidgeon, L. M., Vuletic, T. & Grealy, M. 2017b Towards a shared ontology: a generic classification of cognitive processes in conceptual design. Des. Sci. 3, 142.
Henson, R. 2007 Efficient experimental design for fMRI. In Statistical Parametric Mapping: The Analysis of Functional Brain Images (ed. Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E. & Penny, W. D.), pp. 193210. Academic Press.
Howard-Jones, P. A., Blakemore, S.-J., Samuel, E. A., Summers, I. R. & Claxton, G. 2005 Semantic divergence and creative story generation: an fMRI investigation. Cogn. Brain Res. 25, 240250.
Hubka, V. & Eder, W. E. 1988 Theory of Technical Systems, 2nd edn. Springer.
Jin, Y. & Chusilp, P. 2006 Study of mental iteration in different design situations. Des. Stud. 27, 2555.
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., Reber, P. J. & Kounios, J. 2004 Neural activity when people solve verbal problems with insight. PLoS Biol. 2, e97.
Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J. & Rushworth, M. F. S. 2006 Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9, 940947, https://doi.org/10.1038/nn1724.
Kleinmintz, O. M., Ivancovsky, T. & Shamay-Tsoory, S. G. 2019 The two-fold model of creativity: the neural underpinnings of the generation and evaluation of creative ideas. Curr. Opin. Behav. Sci. 27, 131138.
Kottlow, M., Praeg, E., Luethy, C. & Jancke, L. 2011 Artists’ advance: decreased upper alpha power while drawing in artists compared with non-artists. Brain Topogr. 23, 392402.
Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B. & Jung-Beeman, M. 2006 The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychol. Sci. 17, 882890, https://doi.org/10.1111/j.1467-9280.2006.01798.x.
Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S. & Yamamoto, M. 2009 Neural networks involved in artistic creativity. Hum. Brain Mapp. 30, 16781690.
Krippendorff, K. 2004 Content Analysis: An Introduction to its Methodology, 2nd edn. Sage.
Liu, L., Li, Y., Xiong, Y., Cao, J. & Yuan, P. 2018a An EEG study of the relationship between design problem statements and cognitive behaviors during conceptual design. Artif. Intell. Eng. Des. Anal. Manuf. 32, 351362.
Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M. & Braun, A. R. 2015 Brain activity and connectivity during poetry composition: toward a multidimensional model of the creative process. Hum. Brain Mapp. 36, 33513372, https://doi.org/10.1002/hbm.22849.
Liu, Z., Zhang, J., Xie, X., Rolls, E. T., Sun, J., Zhang, K., Jiao, Z., Chen, Q., Zhang, J., Qiu, J. & Feng, J. 2018b Neural and genetic determinants of creativity. Neuroimage 174, 164176.
Lu, J., Yang, H., Zhang, X., He, H., Luo, C. & Yao, D. 2015 The brain functional state of music creation: an fMRI study of composers. Sci. Rep. 5, 12277.
Matthews, S. C., Paulus, M. P., Simmons, A. N., Nelesen, R. A. & Dimsdale, J. E. 2004 Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. Neuroimage 22, 11511156, https://doi.org/10.1016/j.neuroimage.2004.03.005.
Mayer, A. R., Teshiba, T. M., Franco, A. R., Ling, J., Shane, M. S., Stephen, J. M. & Jung, R. E. 2012 Modeling conflict and error in the medial frontal cortex. Hum. Brain Mapp. 33, 28432855, https://doi.org/10.1002/hbm.21405.
Mouchiroud, C. & Lubart, T. 2001 Children’s original thinking: an empirical examination of alternative measures derived from divergent thinking tasks. J. Genet. Psychol. 162, 382401.
Mumford, M. D., Medeiros, K. E. & Partlow, P. J. 2012 Creative thinking: processes, strategies, and knowledge. J. Creat. Behav. 46, 3047.
Nelson, B. A., Wilson, J. O., Rosen, D. & Yen, J. 2009 Refined metrics for measuring ideation effectiveness. Des. Stud. 30, 737743.
Nguyen, P., Nguyen, T. A. & Zeng, Y. 2018 Empirical approaches to quantifying effort, fatigue and concentration in the conceptual design process. Res. Eng. Des. 29, 393409.
Peeters, J., Verhaegen, P., Vandevenne, D. & Duflou, J. R. 2010 Refined metrics for measuring novelty in ideation. In Proc. IDMME – Virtual Concept 2010, pp. 14.
Pidgeon, L. M., Grealy, M., Duffy, A. H. B., Hay, L., McTeague, C., Vuletic, T., Coyle, D. & Gilbert, S. J. 2016 Functional neuroimaging of visual creativity: a systematic review and meta-analysis. Brain Behav. 6, 126.
Pinho, A. L., Ullén, F., Castelo-Branco, M., Fransson, P. & De Manzano, Ö. 2016 Addressing a paradox: dual strategies for creative performance in introspective and extrospective networks. Cereb. Cortex 26, 30523063, https://doi.org/10.1093/cercor/bhv130.
Pugh, S. 1991 Total Design: Integrated Methods for Successful Product Engineering. Addison–Wesley.
QSR International2018 Discover the NVivo Suite [Online]. URL http://www.qsrinternational.com/nvivo/nvivo-products (accessed 6.22.18).
Rostrup, E., Law, I., Blinkenberg, M., Larsson, H. B. W., Born, A. P., Holm, S. & Paulson, O. B. 2000 Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. Neuroimage 11, 8797, https://doi.org/10.1006/nimg.1999.0526.
Saggar, M., Quintin, E.-M., Kienitz, E., Bott, N. T., Sun, Z. & Hong, W.-C. et al. 2015 Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Sci. Rep. 5, 111.
Sandkühler, S. & Bhattacharya, J. 2008 Deconstructing insight: EEG correlates of insightful problem solving. PLoS One 1, 112, https://doi.org/10.1371/journal.pone.0001459.
Shah, J. J., Smith, S. M. & Vargas-Hernandez, N. 2003 Metrics for measuring ideation effectiveness. Des. Stud. 24, 111134.
Shealy, T. & Gero, J. 2019 The neurocognition of three engineering concept generation techniques. In Proceedings of the Design Society: International Conference on Engineering Design, vol. 1, pp. 18331842. https://doi.org/10.1017/dsi.2019.189.
Shen, W., Yuan, Y., Liu, C. & Luo, J. 2017 The roles of the temporal lobe in creative insight: an integrated review. Think. Reason 23, 321375, https://doi.org/10.1080/13546783.2017.1308885.
Silk, E. M., Daly, S. R., Jablokow, K., Yilmaz, S. & Rosenberg, M. N. 2014 The design problem framework: using adaption-innovation theory to construct design problem statements. In 121st ASEE Annual Conference and Exposition, Indianapolis.
Sluis-Thiescheffer, W., Bekker, T., Eggen, B., Vermeeren, A. & De Ridder, H. 2016 Measuring and comparing novelty for design solutions generated by young children through different design methods. Des. Stud. 43, 4873.
Smith, S. M., Ward, T. B. & Finke, R. A. 1995 The Creative Cognition Approach. MIT Press.
Sosa, R. 2018 Metrics to select design tasks in experimental creativity research. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 0, 111.
Sosa, R. & Gero, J. S. 2005 A computational study of creativity in design: the role of society. AI EDAM 19, 229244.
Sylcott, B., Cagan, J. & Tabibnia, G. 2013 Understanding consumer tradeoffs between form and function through metaconjoint and cognitive neuroscience analyses. J. Mech. Des. 135, 101002.
Tian, F., Tu, S., Qiu, J., Lv, J. Y., Wei, D. T., Su, Y. H. & Zhang, Q. L. 2011 Neural correlates of mental preparation for successful insight problem solving. Behav. Brain Res. 216, 626630, https://doi.org/10.1016/j.bbr.2010.09.005.
Uddin, L. Q. 2015 Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 5561, https://doi.org/10.1038/nrn3857.
Verhaegen, P. A., Vandevenne, D., Peeters, J. & Duflou, J. R. 2013 Refinements to the variety metric for idea evaluation. Des. Stud. 34, 243263.
Vieira, S. L. da S, Gero, J. S., Delmoral, J., Gattol, V., Fernandes, C. & Fernandes, A. A. 2019 Comparing the design neurocognition of mechanical engineers and architects: a study of the effect of designer’s domain. Proc. Des. Soc. Int. Conf. Eng. Des. 1, 18531862.
Weisberg, R. W. 1993 Creativity: Beyond the Myth of Genius. W. H. Freeman & Company.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Hay et al. supplementary material
Hay et al. supplementary material

 Unknown (380 KB)
380 KB

The neural correlates of ideation in product design engineering practitioners

  • L. Hay (a1), A. H. B. Duffy (a1), S. J. Gilbert (a2), L. Lyall (a3), G. Campbell (a4), D. Coyle (a5) and M. A. Grealy (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed