Skip to main content
×
×
Home

The role of bridging nodes in behavioral network models of complex engineered systems

  • Hannah S. Walsh (a1), Andy Dong (a2) and Irem Y. Tumer (a1)
Abstract

Recent advances in early stage failure analysis approaches have introduced behavioral network analysis (BNA), which applies a network-based model of a complex engineered system to detect the system-level effect of ‘local’ failures of design variables and parameters. Previous work has shown that changes in microscale network metrics can signify system-level performance degradation. This article introduces a new insight into the influence of the community structure of the behavioral network on the failure tolerance of the system through the role of bridging nodes. Bridging nodes connect a community of nodes in a system to one or more nodes or communities outside of the community. In a study of forty systems, it is found that bridging nodes, under attack, are associated with significantly larger system-level behavioral degradation than non-bridging nodes. This finding indicates that the modularity of the behavioral network could be key to understanding the failure tolerance of the system and that parameters associated with bridging nodes between modules could play a vital role in system degradation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The role of bridging nodes in behavioral network models of complex engineered systems
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The role of bridging nodes in behavioral network models of complex engineered systems
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The role of bridging nodes in behavioral network models of complex engineered systems
      Available formats
      ×
Copyright
Distributed as Open Access under a CC-BY-NC-SA 4.0 license (http://creativecommons.org/licenses/by-nc-sa/4.0/)
Corresponding author
Email address for correspondence: andy.dong@sydney.edu.au
References
Hide All
Albert, R., Jeong, H. & Barabási, A. L. 1999 Diameter of the world-wide web. Nature 401, 130131.
Albert, R., Jeong, H. & Barabási, A. L. 2000 Error and attack tolerance of complex networks. Nature 406 (July), 378381.
Braha, D. & Bar-Yam, Y. 2004 Topology of large-scale engineering problem-solving networks. Physical Review E 69, 016113.
Department of Defense 1980 Procedures for Performing Failure Mode, Effects, and Criticality Analysis (MIL-STD-1629A). Washington, D.C.
Grantham Lough, K., Stone, R. B. & Tumer, I. Y. 2007 The risk in early design method (RED). Journal of Engineering Design 18 (1), 126143.
Grantham Lough, K. A., Stone, R. B. & Tumer, I. Y. 2008 Failure prevention in design through effective catalogue utilization of historical failure events. Journal of Failure Analysis and Prevention 8 (5), 469481.
Haley, B., Dong, A. & Tumer, I. Y. 2014 Creating faultable network models of complex engineered systems. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, NY, USA. American Society of Mechanical Engineers.
Haley, B. M., Dong, A. & Tumer, I. 2016 A comparison of network-based metrics of behavioral degradation in complex engineered systems. Journal of Mechanical Design 138 (12), 121405.
Hwang, W., Cho, Y., Zhang, A. & Remanathan, M.2006 Bridging centrality: identifying bridging nodes in scale-free networks. Technical Report, University at Buffalo.
Jensen, D. C.2012 Enabling safety-informed design decision making through simulation, Reasoning and Analysis. PhD Thesis, Oregon State University, Corvallis.
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A. L. 2000 The large-scale organization of metabolic networks. Nature 407 (6804), 651654.
Kasthurirathna, D., Dong, A., Piraveenan, M. & Tumer, I. Y. 2013 The failure tolerance of mechatronic software systems to random and targeted attacks. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA. American Society of Mechanical Engineers.
Kurtoglu, T. & Tumer, I. Y. 2008 A graph-based fault identification and propagation framework for functional design of complex systems. Journal of Mechanical Design 130 (5), 51401.
Li, S., Li, L., Jia, Y., Liu, X. & Yang, Y. 2013 Identifying vulnerable nodes of complex networks in cascading failures induced by node-based attacks. Mathematical Problems in Engineering 2013, Article 938398.
Liu, J., Xiong, Q., Shi, W., Shi, X. & Wang, K. 2016 Evaluating the importance of nodes in complex networks. Physica A: Statistical Mechanics and its Applications 452, 209219.
Ma, S., Jiang, Z. & Liu, W.2016 A design change analysis model as a change impact analysis basis for semantic design change management. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231 (13), pp. 2384–2397.
Mehrpouyan, H., Haley, B., Dong, A., Tumer, I. Y. & Hoyle, C. 2013 Resilient design of complex engineered systems. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA. American Society of Mechanical Engineers.
Mehrpouyan, H., Haley, B., Dong, A., Tumer, I. Y. & Hoyle, C. 2013 Resilient design of complex engineered systems against cascading failure. In ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, CA, USA. American Society of Mechanical Engineers.
Mitchell, M. 2006 Complex systems: network thinking. Artificial Intelligence 170 (18), 11941212.
Newman, M. E. J. 2004 Detecting community structure in networks. The European Physical Journal B 38 (2), 321330.
Newman, M. E. J. 2010 Networks. Oxford University Press.
OpenModelica [Computer software]. 2016 Retrieved from http://openmodelica.org.
Pattison, P., Wasserman, S., Robins, G. & Kanfer, A. M. 2000 Statistical evaluation of algebraic constraints for social networks. Journal of Mathematical Psychology 44 (4), 536568.
Piraveenan, M., Thedchanamoorthy, G., Uddin, S. & Chung, K. Quantifying topological robustness of networks under sustained targeted attacks. Social Network Analysis and Mining 3 (4), 939952.
Sarkar, S., Dong, A., Henderson, J. A. & Robinson, P. A. 2014 Spectral characterization of hierarchical modularity in product architectures. Journal of Mechanical Design 136 (1), 011006.
Sha, Z. & Panchal, J. H. 2013 Towards the design of complex evolving networks with high robustness and resilience. Procedia Computer Science 16, 522531.
Sole, R. V., Ferrer-Cancho, R., Montoya, J. M. & Valverde, S. 2003 Selection, tinkering, and emergence in complex networks. Complexity 8 (1), 2033.
Sosa, M., Eppinger, S. D. & Rowles, C. M. 2007 A network approach to define modularity of components in complex products. Journal of Mechanical Design 129 (11), 11181129.
Sosa, M., Mihm, J. & Browning, T. R. 2011 Degree distribution and quality in complex engineered systems. Journal of Mechanical Design 133 (10), 101008.
Stone, R. B., Tumer, I. Y. & Van Wie, M. 2005 The function-failure design method. Journal of Mechanical Design 127 (3), 397407.
Vesely, W. E., Goldberg, F. F., Roberts, N. & Haasi, D. F. 1981 The Fault Tree Handbook (NUREG0492). Washington, D.C.
Walsh, H. S., Dong, A. & Tumer, I. Y. 2017 The structure of vulnerable nodes in behavioral network models of complex engineered systems. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA. American Society of Mechanical Engineers.
Wang, M., Sha, Z., Huang, Y., Contractor, N., Fu, Y. & Chen, W. 2016 Forecasting technological impacts on customers’ co-consideration behaviors: a data-driven network analysis approach. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA. American Society of Mechanical Engineers.
Xue, J. & Yang, K. 1995 Dynamic reliability analysis of coherent multistate systems. IEEE Transactions on Reliability 44 (4), 683688.
Zhu, F., Wang, W., Di, Z. & Fan, Y. 2014 Identifying and characterizing key nodes among communities based on electrical-circuit networks. PLoS ONE 9 (6), 110.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Design Science
  • ISSN: -
  • EISSN: 2053-4701
  • URL: /core/journals/design-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed