Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-qzllc Total loading time: 0.643 Render date: 2022-07-06T07:52:15.954Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Charting the typical and atypical development of the social brain

Published online by Cambridge University Press:  07 October 2008

Kevin A. Pelphrey*
Affiliation:
Carnegie Mellon University
Elizabeth J. Carter
Affiliation:
Carnegie Mellon University
*
Address correspondence and reprint requests to: Kevin A. Pelphrey, Department of Psychology, Baker Hall 342c, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213; E-mail: kpelphrey@cmu.edu.

Abstract

We describe recent progress in our program of research that aims to use functional magnetic resonance imaging (fMRI) to identify and delineate the brain systems involved in social perception and to chart the development of those systems and their roles as mechanisms supporting the development of social cognition in children, adolescents, and adults with and without autism. This research program was initiated with the intention of further specifying the role of the posterior superior temporal sulcus (STS) region in the network of neuroanatomical structures comprising the social brain. Initially, this work focused on evaluating STS function when typically developing adults were engaged in the visual analysis of other people's actions and intentions. We concluded that that the STS region plays an important role in social perception via its involvement in representing and predicting the actions and social intentions of other people from an analysis of biological–motion cues. These studies of typically developing people provided a set of core findings and a methodological approach that informed a set of fMRI studies of social perception dysfunction in autism. The work has established that dysfunction in the STS region, as well as reduced connectivity between this region and other social brain structures including the fusiform gyrus and amygdala, play a role in the pathophysiology of social perception deficits in autism. Most recently, this research program has incorporated a developmental perspective in beginning to chart the development of the STS region in children with and without autism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article was supported by grants from the National Institute of Mental Health, John Merck Scholars Fund, National Institute of Child Health and Human Development, Veterans Affairs Administration, Autism Speaks, and National Institute for Neurological Disorders and Stroke. Kevin Pelphrey is supported by a Career Development Award from the National Institutes of Health (NIMH Grant MH071284). Elizabeth Carter is supported by a predoctoral fellowship from Autism Speaks. We gratefully acknowledge our collaborators, especially Gregory McCarthy, James Morris, and Truett Allison.

References

Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 2, 231239.CrossRefGoogle Scholar
Adolphs, R. (2003). Is the human amygdala specialized for processing social information? Annals of the New York Academy of Sciences, 985, 326340.CrossRefGoogle ScholarPubMed
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Science, 4, 267278.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google ScholarPubMed
Anderson, A. K., & Phelps, E. A. (2000). Expression without recognition: Contributions of the human amygdala to emotional communication. Psychological Science, 11, 106111.CrossRefGoogle ScholarPubMed
Argyle, M., & Cook, M. (1976). Gaze and mutual gaze. Cambridge: Cambridge University Press.Google Scholar
Ashwin, C., Chapman, E., Colle, L., & Baron-Cohen, S. (2006). Impaired recognition of negative basic emotions in autism: A test of the amygdala. Social Neuroscience, 1, 349–63.CrossRefGoogle ScholarPubMed
Asperger, H. (1944). Die “autistischen psychopathen” im kindesalter [Autistic psychopathy in childhood]. Archiv fur Psychiatrie und Nervenkrankheiten, 117, 76136.CrossRefGoogle Scholar
Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind. Cambridge: MIT Press.Google Scholar
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 3746.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Ring, H. A., Wheelwright, S., Bullmore, E. T., Brammer, M. J., Simmons, A., et al. (1999). Social intelligence in the normal and autistic brain: An fMRI study. European Journal of Neuroscience, 11, 18911898.CrossRefGoogle Scholar
Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” Test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42, 241251.CrossRefGoogle ScholarPubMed
Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S. L., & Stone, W. L. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14, 151157.CrossRefGoogle ScholarPubMed
Boddaert, N., Belin, P., Chabane, N., Poline, J. B., Barthelemy, C., Mouren-Simeoni, M.-C., et al. (2003). Perception of complex sounds: Abnormal pattern of cortical activation in autism. The American Journal of Psychiatry, 160, 20572060.CrossRefGoogle ScholarPubMed
Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M.-H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: A voxel-based morphometry study. NeuroImage, 1, 364369.CrossRefGoogle Scholar
Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16, 37373744.Google ScholarPubMed
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400404.Google Scholar
Carter, E. J., & Pelphrey, K. A. (2006). School-aged children exhibit domain-specific responses to biological motion. Social Neuroscience, 1, 396411.CrossRefGoogle ScholarPubMed
Carter, E. J., & Pelphrey, K. A. (2008). Friend or foe? Brain systems involved in the perception of dynamic signals of menacing and friendly social approaches. Social Neuroscience, 3, 151163.CrossRefGoogle ScholarPubMed
Castelli, F., Frith, C., Happe, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 18391849.CrossRefGoogle ScholarPubMed
Center for Disease Control and Prevention. (2007). Prevalence of the Autism Spectrum Disorders in multiple areas of the United States, 2000 and 2002. Washington, DC: MMWR.Google Scholar
Charman, T. (2003). Why is joint attention a pivotal skill in autism? Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 315324.CrossRefGoogle ScholarPubMed
Critchley, H. D., Daly, E. M., Bullmore, E. T., Williams, S. C., Van Amelsvoort, T., Robertson, D. M., et al. (2000). The functional neuroanatomy of social behaviour: Changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain, 123, 22032212.CrossRefGoogle ScholarPubMed
Cross, H. A., & Harlow, H. F. (1965). Prolonged and progressive effects of partial isolation on the behavior of macaque monkeys. Journal of Experimental Research in Personality, 1, 3949.Google Scholar
Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., Goldsmith, H. H., et al. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8, 519526.CrossRefGoogle ScholarPubMed
D'Argembeau, A., Collette, F., Van der Linden, M., Laureys, S., Del Fiore, G., Degueldre, C., et al. (2005). Self-referential reflective activity and its relationship with rest: A PET study. NeuroImage, 25, 616624.CrossRefGoogle ScholarPubMed
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6, 1334.CrossRefGoogle ScholarPubMed
Dawson, G., Meltzoff, A. N., Osterling, J., Rinaldi, J., & Brown, E. (1998). Children with autism fail to orient to naturally occurring social stimuli. Journal of Autism and Developmental Disorders, 28, 479485.CrossRefGoogle ScholarPubMed
Dawson, G., Munson, J., Estes, A., Osterling, J., McPartland, J., Toth, K., et al. (2002). Neurocognitive function and joint attention ability in young children with autism spectrum disorder versus developmental delay. Child Development, 73, 345358.CrossRefGoogle ScholarPubMed
Dawson, G., Webb, S., Schellenberg, G. D., Dager, S., Friedman, S., Aylward, E., et al. (2002). Defining the broader phenotype of autism: Genetic, brain and behavioral perspectives. Development and Psychopathology, 14, 581611.CrossRefGoogle ScholarPubMed
Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293, 24702473.CrossRefGoogle ScholarPubMed
Fischer, K. W., & Bidell, T. R. (1998). Dynamic development of psychological structures in action and thought. In Lerner, R. M. (Ed.), Handbook of child psychology, Vol 1: Theoretical models of human development (5th ed., pp. 467561). New York: Wiley.Google Scholar
Fox, R., & McDaniel, C. (1982). The perception of biological motion by human infants. Science, 218, 486487.CrossRefGoogle ScholarPubMed
Freese, J. L., & Amaral, D. G. (2005). The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. The Journal of Comparative Neurology, 486, 295317.CrossRefGoogle ScholarPubMed
Frith, C. D. & Frith, U. (1999). Interacting minds—A biological basis. Science, 286, 16921695.CrossRefGoogle Scholar
Gervais, H., Belin, P., Boddaert, N., Leboyer, M., Coez, A., Sfaello, I., et al. (2004). Abnormal cortical voice processing in autism. Nature Neuroscience, 7, 801802.CrossRefGoogle ScholarPubMed
Gottlieb, G. (1991). Experimental canalization of behavioral development. Developmental Psychology, 27, 413.CrossRefGoogle Scholar
Guyer, A. E., Monk, C. S., McClure-Tone, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., et al. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20, 15651582.CrossRefGoogle ScholarPubMed
Harlow, H. F., Dodsworth, R. O., & Harlow, M. K. (1965). Total social isolation in monkeys. Proceedings of the National Academy of Sciences of the United States of America, 54, 9097.CrossRefGoogle ScholarPubMed
Harlow, H. F., Rowland, G. L., & Griffin, G. A. The effect of total social deprivation on the development of monkey behavior. Psychiatric Research Report, 19, 116135.Google ScholarPubMed
Harlow, H. F., & Suomi, S. J. (1971). Production of depressive behaviors in young monkeys. Journal of Autism and Developmental Disorders, 1, 246255.CrossRefGoogle ScholarPubMed
Iidaka, T., Omori, M., Murata, T., Kosaka, H., Yonekura, Y., Okada, T., et al. (2001). Neural interaction of the amygdala with the prefrontal and temporal cortices in the processing of facial expressions as revealed by fMRI. Journal of Cognitive Neuroscience, 13, 10351047.CrossRefGoogle ScholarPubMed
Irujo, S. (1988). An introduction to intercultural differences and similarities in nonverbal communication. In Wurzel, J. (Ed.), Toward multiculturalism. Yarmouth, ME: Intercultural Press.Google Scholar
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201211.CrossRefGoogle Scholar
Johnson, M. H. (2006). Biological motion: A perceptual life detector? Current Biology, 16, 376377.CrossRefGoogle ScholarPubMed
Just, M. C., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 18111821.CrossRefGoogle ScholarPubMed
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Kanner, L. (1971). Follow-up study of eleven autistic children originally reported in 1943. Journal of Autism and Childhood Schizophrenia, 1, 119145.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A odule in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 43024311.Google Scholar
Kelley, W. M., MaCrae, C. N., Wyland, C. L., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 5, 785794.CrossRefGoogle Scholar
Klin, A., & Jones, W. (2008). Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism. Developmental Science, 11, 4046.CrossRefGoogle Scholar
Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59, 809816.CrossRefGoogle ScholarPubMed
Kluver, H., & Bucy, P. C. (1997). Preliminary analysis of functions of the temporal lobes in monkeys. Journal of Neuropsychiatry and Clinical Neuroscience, 9, 606620.CrossRefGoogle ScholarPubMed
Kobayashi, H., & Kohshima, S. (1997). Unique morphology of the human eye. Nature, 387, 767768.CrossRefGoogle ScholarPubMed
Kuhn, R., & Cahn, C. H. (2004). Eugen Bleuler's concepts of psychopathology. History of Psychiatry, 15, 361366.CrossRefGoogle ScholarPubMed
LaBar, K. S., Crupain, M. J., Voyvodic, J. T., & McCarthy, G. (2003). Dynamic perception of facial affect and identity in the human brain. Cerebral Cortex, 13, 10231033.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.CrossRefGoogle Scholar
Leekam, S. R., Hunnisett, E., & Moore, C. (1998). Targets and cues: Gaze-following in children with autism. Journal of Child Psychology and Psychiatry, 39, 951962.CrossRefGoogle ScholarPubMed
Leekam, S. R., Lopez, B., & Moore, C. (2000). Attention and joint attention in preschool children with autism. Developmental Psychology, 36, 261273.CrossRefGoogle ScholarPubMed
Levitt, J. G., Blanton, R. E., Smalley, S., Thompson, P. M., Guthrie, D., McCracken, J. T., et al. (2003). Cortical sulcal maps in autism. Cerebral Cortex, 13, 728735.CrossRefGoogle ScholarPubMed
Lord, C., Pickles, A., McLennan, J., Rutter, M., Bregman, J., Folstein, S., et al. (1997). Diagnosing autism: Analyses of data from the Autism Diagnostic Interview. Journal of Autism and Developmental Disorders. 27, 501517.CrossRefGoogle ScholarPubMed
Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview—Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659685.CrossRefGoogle ScholarPubMed
Loveland, K. A., & Landry, S. H. (1986). Joint attention and language in autism and developmental language delay. Journal of Autism and Developmental Disorders, 16, 335349.CrossRefGoogle ScholarPubMed
Maestro, S., Muratori, F., Cavallaro, M. C., Pei, F., Stern, D., Golse, B., et al. (2002). Attentional skills during the first 6 months of age in autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 12391245.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Kohn, P. D., Kolachana, B., Kippenhan, S., McInery-Leo, A., Nussbaum, R. L., et al. (2005). Midbrain dopamine and prefrontal function in humans: Interaction and modulation by COMT genotype. Nature Neuroscience, 8, 594596.CrossRefGoogle ScholarPubMed
Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005). General and specific contributions of the medial prefrontal cortex to knowledge about mental states. NeuroImage, 28, 757762.CrossRefGoogle ScholarPubMed
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383, 812815.CrossRefGoogle ScholarPubMed
Morris, J. S., Ohman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393, 467470.CrossRefGoogle ScholarPubMed
Mosconi, M. W., Mack, P. B., McCarthy, G., & Pelphrey, K. A. (2005). Taking an “intentional stance” on eye-gaze shifts: A functional neuroimaging study of social perception in children. NeuroImage, 27, 247252.CrossRefGoogle ScholarPubMed
Mundy, P., Sigman, M., & Kasari, C. (1990). A longitudinal study of joint attention and language development in autistic children. Journal of Autism and Developmental Disorders, 20, 115128.CrossRefGoogle ScholarPubMed
Mundy, P., Sigman, M., Ungerer, J., & Sherman, T. (1986). Defining the social deficits of autism: The contribution of non-verbal communication measures. Journal of Child Psychology and Psychiatry, 27, 657669.CrossRefGoogle ScholarPubMed
Northoff, G., Heinzel, A., de Greck, M., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain: A meta-analysis of imaging studies on the self. NeuroImage, 31, 440457.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Knierim, K., Ludlow, D. H., Hanelin, J., Ramachandran, T., Glover, G., et al. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16, 17461772.CrossRefGoogle ScholarPubMed
Ogai, M., Matsumoto, H., Katsuaki, S., Ozawa, F., Fukuda, R., Uchiyama, I., et al. (2003). fMRI study of recognition of facial expressions in high-functioning autistic patients. NeuroReport, 14, 559563.CrossRefGoogle ScholarPubMed
Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T., et al. (2000). Abnormal regional cerebral blood flow in childhood autism. Brain, 123, 18381844.CrossRefGoogle ScholarPubMed
Osterling, J., & Dawson, G. (1994). Early recognition of children with autism: A study of first birthday home videotapes. Journal of Autism and Developmental Disorders, 24, 247257.CrossRefGoogle ScholarPubMed
Osterling, J. A., Dawson, G., & Munson, J. A. (2002). Early recognition of 1-year-old infants with autism spectrum disorder versus mental retardation. Development and Psychopathology, 14, 239251.CrossRefGoogle ScholarPubMed
Peelen, M., Wiggett, A., & Downing, P. (2006). Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron, 49, 815822.CrossRefGoogle ScholarPubMed
Pelphrey, K., Adolphs, R., & Morris, J. P. (2004). Neuroanatomical substrates of social cognition dysfunction in autism. Mental Retardation and Developmental Disabilities Research Review, 10, 259271.CrossRefGoogle ScholarPubMed
Pelphrey, K. A., & Carter, E. J. (2007). Brain mechanisms underlying social perception deficits in autism. In Coch, D., Dawson, G., & Fischer, K. W. (Eds.), Human Behavior and the developing brain: Atypical development. New York: Guilford Press.Google ScholarPubMed
Pelphrey, K. A., & Carter, E. J. (in press). Brain mechanisms for social perception: Lessons from autism and typical development. Annals of the New York Academy of Sciences.Google Scholar
Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience, 23, 68196825.Google ScholarPubMed
Pelphrey, K. A., & Morris, J. P. (2006). Brain mechanisms for interpreting the actions of others from biological-motion cues. Current Directions in Psychological Science, 15, 136140.CrossRefGoogle ScholarPubMed
Pelphrey, K. A., Morris, J. P., & McCarthy, G. (2004). Grasping the intentions of others: The perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. Journal of Cognitive Neuroscience, 16, 17061716.CrossRefGoogle ScholarPubMed
Pelphrey, K. A., Morris, J. P., & McCarthy, G. (2005). Neural basis of eye gaze processing deficits in autism. Brain, 128(Pt. 5), 10381048.CrossRefGoogle ScholarPubMed
Pelphrey, K. A., & Perlman, S. B. (in press). Charting brain mechanisms for the development of social cognition. In Rumsey, J. & Ernst, M. (Eds.), Neuroimaging in developmental clinical neuroscience. Cambridge: Cambridge University Press.Google Scholar
Pelphrey, K. A., Singerman, J. D., Allison, T., & McCarthy, G. (2003). Brain activation evoked by perception of gaze shifts: The influence of context. Neuropsychologia, 41, 156170.CrossRefGoogle Scholar
Pelphrey, K. A., Viola, R. J., & McCarthy, G. (2004). When strangers pass: Processing of mutual and averted social gaze in the superior temporal sulcus. Psychological Science, 15, 598603.CrossRefGoogle ScholarPubMed
Perner, J., Frith, U., Leslie, A.M., & Leekam, S. R. (1989). Exploration of the autistic children's theory of mind: Knowledge, belief, and communication. Child Development, 60, 689700.CrossRefGoogle Scholar
Perrett, D. I., Smith, P. A., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., et al. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London, Series B: Biological Sciences, 223, 293317.CrossRefGoogle ScholarPubMed
Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: A functional magnetic resonance imaging study. Journal of Neuroscience, 16, 52055215.Google ScholarPubMed
Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. Journal of Neuroscience, 18, 21882199.Google ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.CrossRefGoogle ScholarPubMed
Rogoff, B. (1990). Apprenticeship in thinking. New York: Oxford University Press.Google Scholar
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind.” NeuroImage, 19, 18351842.CrossRefGoogle ScholarPubMed
Saxe, R., & Powell, L. J. (2006). It's the thought that counts: Specific brain regions for one component of theory of mind. Psychological Science, 17, 692699.CrossRefGoogle ScholarPubMed
Shannon, B. J., & Buckner, R. L. (2004). Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. Journal of Neuroscience, 24, 1008410092.CrossRefGoogle ScholarPubMed
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.CrossRefGoogle ScholarPubMed
Sigman, M., Ruskin, E., Arbeile, S., Corona, R., Dissanayake, C., Espinosa, M., et al. (1999). Continuity and change in the social competence of children with autism, Down syndrome, and developmental delays. Monographs of the Society for Research in Child Development, 64, 1114.CrossRefGoogle ScholarPubMed
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences of the United States of America, 105, 809813.CrossRefGoogle ScholarPubMed
Thurm, A., Lord, C., Lee, L., & Newschaffer, C. (2006). Predictors of language acquisition in preschool children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37, 17211734.CrossRefGoogle ScholarPubMed
Tomasello, M., & Farrar, M. J. (1986). Joint attention and early language. Child Development, 57, 14541463.CrossRefGoogle ScholarPubMed
Tomasello, M., Hare, B., Lehmann, H., & Call, J. (2007). Reliance on head versus eyes in the gaze following of great apes and human infants: The cooperative eye hypothesis. Journal of Human Evolution, 52, 314320.CrossRefGoogle ScholarPubMed
Troje, N., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “life detector”? Current Biology, 16, 821824.CrossRefGoogle ScholarPubMed
Valsiner, J. (1987). Culture and the development of children's action. Chichester: Wiley.Google Scholar
Volkmar, F., Chawarska, K., & Klin, A. (2005). Autism in infancy and early childhood. Annual Review of Psychology, 56, 315336.CrossRefGoogle ScholarPubMed
Volkmar, F. R., Carer, A., Sparrow, S., & Cicchetti, D. V. (1993). Quantifying social development in autism. Journal of the American Academy of Child & Adolescent Psychiatry, 32, 627632.CrossRefGoogle ScholarPubMed
Volkmar, F., & Mayes, L. C. (1990). Gaze behavior in autism. Development and Psychopathology, 2, 6169.CrossRefGoogle Scholar
Vuilleumier, P., Richardson, M. P., Armony, J. L., Driver, J., & Dolan, R. J. (2004). Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience, 7, 12711278.CrossRefGoogle ScholarPubMed
Vygotsky, L. S. (1978). Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press.Google Scholar
Wang, A. T., Dapretto, M., Hariri, A. R., Sigman, M., & Bookheimer, S. Y. (2004). Neural correlates of facial affect processing in children and adolescents with autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 481490.CrossRefGoogle ScholarPubMed
Watson, J. D., Myers, R., Frackowiak, R. S., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., et al. (1993). Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex, 3, 7994.CrossRefGoogle ScholarPubMed
Werner, H. (1957). Comparative psychology of mental development. New York: International Universities Press.Google Scholar
Wing, L., & Gould, J. (1979). Severe impairments of social interaction and associated abnormalities in children: Epidemiology and classification. Journal of Autism and Developmental Disorders, 9, 1129.CrossRefGoogle ScholarPubMed
Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11, 641649.Google ScholarPubMed
Zilbovicius, M., Boddaert, N., Belin, P., Poline, J.-B., Remy, P., Mangin, J.-F., et al. (2000). Temporal lobe dysfunction in childhood autism: A PET study. The American Journal of Psychiatry, 157, 19881993.CrossRefGoogle ScholarPubMed
Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23, 143152.CrossRefGoogle ScholarPubMed
88
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Charting the typical and atypical development of the social brain
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Charting the typical and atypical development of the social brain
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Charting the typical and atypical development of the social brain
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *