Hostname: page-component-797576ffbb-cx6qr Total loading time: 0 Render date: 2023-12-06T19:43:55.980Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology

Published online by Cambridge University Press:  01 November 2005

Columbia College of Physicians & Surgeons New York State Psychiatric Institute
Boston College
Columbia College of Physicians & Surgeons New York State Psychiatric Institute


The circumplex model of affect proposes that all affective states arise from cognitive interpretations of core neural sensations that are the product of two independent neurophysiological systems. This model stands in contrast to theories of basic emotions, which posit that a discrete and independent neural system subserves every emotion. We propose that basic emotion theories no longer explain adequately the vast number of empirical observations from studies in affective neuroscience, and we suggest that a conceptual shift is needed in the empirical approaches taken to the study of emotion and affective psychopathologies. The circumplex model of affect is more consistent with many recent findings from behavioral, cognitive neuroscience, neuroimaging, and developmental studies of affect. Moreover, the model offers new theoretical and empirical approaches to studying the development of affective disorders as well as the genetic and cognitive underpinnings of affective processing within the central nervous system.This work was supported in part by NIMH Grants MH01232, MH59139, MH36197, MHK02-74677, and MH068318; a grant from the National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD); NSF Grant BSC-0421702; and funding from the Thomas D. Klingenstein and Nancy D. Perlman Family Fund and the Suzanne Crosby Murphy Endowment at Columbia University.

Research Article
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Abelson, R. P., & Sermat, V. (1962). Multidimensional scaling of facial expressions. Journal of Experimental Psychology 63, 546554.Google Scholar
Aggleton, J. P., & Passingham, R. E. (1981). Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). Journal of Comparative Physiology and Psychology 95, 961977.Google Scholar
Ahern, G. L., & Schwartz, G. E. (1985). Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis. Neuropsychologia 23, 745755.Google Scholar
Almasy, L., & Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics 62, 11981211.Google Scholar
Amos, C. I. (1994). Robust variance-components approach for assessing genetic linkage in pedigrees. American Journal of Human Genetics 54, 535543.Google Scholar
Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., Gabrieli, J. D., & Sobel, N. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience 6, 196202.Google Scholar
Axelson, D. A., & Birmaher, B. (2001). Relation between anxiety and depressive disorders in childhood and adolescence. Depression and Anxiety 14, 6778.Google Scholar
Babinski, J. (1914). Contribution a l'etude des troubles mentaux dans l'hemisplegic organique cerebrale (anosognosie). Review of Neurology 27, 845848.Google Scholar
Baxter, M. G., & Murray, E. A. (2002). The amygdala and reward. Nature Review of Neuroscience 3, 563573.Google Scholar
Berridge, K. C. (2003). Comparing the emotional brains of humans and other animals. In R. J. Davidson, K. R. Scherer, & H. Hill Goldsmith (Eds.), Handbook of affective sciences (pp. 2551). New York: Oxford University Press.
Biederman, J., & Spencer, T. (1999). Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biological Psychiatry 46, 12341242.Google Scholar
Blumberg, H., Kaufman, J., Martin, A., Whiteman, R., Gore, J., Charney, D., Krystal, J., & Peterson, B. (2003). Amygdala and hippocampus volumes in adolescents and adults with bipolar disorder. Archives of General Psychiatry 60, 12011208.Google Scholar
Bradley, M. (2000). Emotion and motivation. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 602642). New York: Cambridge University Press.
Bradley, M., Sabatinelli, D., Lang, P., Fitzsimmons, J. R., King, W., & Desai, P. (2003). Activation of the visual cortex in motivated attention. Behavioral Neuroscience 117, 369380.Google Scholar
Bremner, J. D. (2002). Neuroimaging studies in post-traumatic stress disorder. Current Psychiatry Report 4, 254263.Google Scholar
Breslau, N., Schultz, L., & Peterson, E. (1995). Sex differences in depression: A role for preexisting anxiety. Psychiatry Research 58, 112.Google Scholar
Bullock, M., & Russell, J. A. (1984). Preschool children's interpretation of facial expressions of emotion. International Journal of Behavioral Development 7, 193214.Google Scholar
Bush, L. E. (1973). Individual differences multidimensional scaling of adjectives denoting feelings. Journal of Personality and Social Psychology 25, 5057.Google Scholar
Cacioppo, J. T., Berntson, G. G., Larsen, J. T., Poehlmann, K. M., & Ito, T. A. (2000). The psychophysiology of emotion. In M. Lewis & J. M. Haviland–Jones (Eds.), Handbook of emotions (2nd ed.). New York: Guilford Press.
Cacioppo, J. T., Petty, R. E., Losch, M. E., & Kim, H. S. (1986). Electromyographic activity over facial muscle regions can differentiate the valence and intensity of affective reactions. Journal of Personality and Social Psychology 50, 260268.Google Scholar
Camras, L. A. (1992). Expressive development and basic emotions. Cognition and Emotion 6, 269283.Google Scholar
Clark, L. A., Watson, D., & Mineka, S. (1994). Temperament, personality, and the mood and anxiety disorders. Journal of Abnormal Psychology 103, 103116.Google Scholar
Cliff, N., & Young, F. W. (1968). On the relation between unidimensional judgments adn multidimensional scaling. Organizational Behavior and Human Performance 3, 269285.Google Scholar
Damasio, A. R. (1994). Descartes' error. New York: Avon Books.
Damasio, A. R. (2003). Looking for Spinoza: Joy, sorrow and the feeling brain. New York: Harcourt.
Davidson, R. J. (1984). Affect, cognition, and hemispheric specialization. In C. E. Izard, J. Kagan, & R. Zajonc (Eds.), Emotion, cognition, and behavior (pp. 320365). New York: Cambridge University Press.
Davidson, R. J. (2002). Anxiety and affective style: Role of prefrontal cortex and amygdala. Biological Psychiatry 51, 6880.Google Scholar
Davidson, R. J. (2003). Seven sins in the study of emotion: Correctives from affective neuroscience. Brain and Cognition 52, 129132.Google Scholar
Davidson, R. J., Ekman, P., Saron, C., Senulis, J., & Friesen, W. V. (1990). Approach/withdrawal and cerebral asymmetry: Emotional expression and brain physiology. Journal of Personality and Social Psychology 58, 330341.Google Scholar
Davidson, R. J., & Fox, N. A. (1989). Frontal brain asymmetry predicts infants' response to maternal separation. Journal of Abnormal Psychology 98, 127131.Google Scholar
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry 6, 1334.Google Scholar
Daw, N. D., Kakade, S., & Dayan, P. (2002). Opponent interactions between serotonin and dopamine. Neural Networks 15, 603616.Google Scholar
DelBello, M. P., Zimmerman, M. E., Mills, N. P., Getz, G. E., & Strakowski, S. M. (2004). Magnetic resonance imaging analysis of amygdala and other subcortical brain regions in adolescents with bipolar disorder. Bipolar Disorders 6, 4352.Google Scholar
Diana, M., Melis, M., Muntoni, A. L., & Gessa, G. L. (1998). Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proceedings of the National Academy of Science of the United States of America 95, 1026910273.Google Scholar
Diana, M., Pistis, M., Muntoni, A., & Gessa, G. (1996). Mesolimbic dopaminergic reduction outlasts ethanol withdrawal syndrome: Evidence of protracted abstinence. Neuroscience 71, 411415.Google Scholar
Diler, R. S., Kibar, M., & Avci, A. (2004). Pharmacotherapy and regional cerebral blood flow in children with obsessive compulsive disorder. Yonsei Medical Journal 45, 9099.Google Scholar
Doyle, A. E., & Faraone, S. V. (2002). Familial links between attention deficit hyperactivity disorder, conduct disorder, and bipolar disorder. Current Psychiatry Report 4, 146152.Google Scholar
Dremencov, E., Gispan–Herman, I., Rosenstein, M., Mendelman, A., Overstreet, D. H., Zohar, J., & Yadid, G. (2004). The serotonin–dopamine interaction is critical for fast-onset action of antidepressant treatment: In vivo studies in an animal model of depression. Progress in Neuropsychopharmacology and Biological Psychiatry 28, 141147.Google Scholar
Drevets, W. C. (2003). Neuroimaging abnormalities in the amygdala in mood disorders. Annals of the New York Academy of Sciences 985, 420444.Google Scholar
Drevets, W. C., Bogers, W., & Raichle, M. E. (2002). Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. European Neuropsychopharmacology 12, 527544.Google Scholar
Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A., Price, J. L., & Mathis, C. A. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry 49, 8196.Google Scholar
Drevets, W. C., Ongur, D., & Price, J. L. (1998). Neuroimaging abnormalities in the subgenual prefrontal cortex: Implications for the pathophysiology of familial mood disorders. Molecular Psychiatry, 3, 220–226, 190–221.Google Scholar
Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion 6, 169200.Google Scholar
Ekman, P. (1993). Facial expression and emotion. American Psychologist 48, 384392.Google Scholar
Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science 221, 12081210.Google Scholar
Faraone, S. V., Glatt, S. J., & Tsuang, M. T. (2003). The genetics of pediatric-onset bipolar disorder. Biological Psychiatry 53, 970977.Google Scholar
Feldman Barrett, L., & Fossum, T. (2001). Mental representations of affect knowledge. Cognition and Emotion 15, 333363.Google Scholar
Feldman, L. A. (1995). Valence focus and arousal focus: Individual differences in the structure of affective experience. Journal of Personality and Social Psychology 69, 153166.Google Scholar
Feldman Barrett, L., & Russell, J. A. (1998). Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology 74, 976984.Google Scholar
Fernandez–Dols, J. M., & Ruiz–Belda, M. A. (1997). Spontaneous facial behavior during intense emotional episodes: Artistic truth and optical truth. In J. A. Russell & J. M. Fernandez–Dols (Eds.), The psychology of facial expression (pp. 255274). New York: Cambridge University Press.
Fridja, N. H. (1986). The emotions. Cambridge: Cambridge University Press.
Fuster, J. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Raven Press.
Gainotti, G. (1972). Emotional behavior and hemispheric side of lesion. Cortex 8, 4155.Google Scholar
Goldstein, K. (1948). Language and language disturbances. New York: Grune & Stratton.
Goldstein, R., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry 159, 16421652.Google Scholar
Gorman, J. M. (1996). Comorbid depression and anxiety spectrum disorders. Depression and Anxiety 4, 160168.Google Scholar
Hamm, A. O., Gerlach, M., Globisch, J., & Vaitl, D. (1992). Phobia specific startle reflex modulation during affective imagery and slide viewing. Psychophysiology, 29, S36.Google Scholar
Harris, P. L. (2000). Understanding emotion. In M. Lewis & J. M. Haviland–Jones (Eds.), Handbook of emotion. New York: Guilford Press.
Heilman, K. (2000). Emotional experience: A neurological model. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 328344). New York: Oxford University Press.
Heilman, K., Watson, R. T., & Valenstein, E. (1993). Neglect and related disorders. In K. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (3rd ed.). New York: Oxford University Press.
Heilman, K., Watson, R. T., & Valenstein, E. (2003). Neglect and related disorders. In K. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp. 296346). New York: Oxford University Press.
Henriques, J. B. D., & Davison, R. J. (1990). Regional brain electrical asymmetries discriminate between previously depressed and healthy controls. Journal of Abnormal Psychology 99, 2231.Google Scholar
Henriques, J. B. D., & Davison, R. J. (1991). Left frontal hypoactivation in depression. Journal of Abnormal Psychology 100, 535545.Google Scholar
Horel, J. A., Keating, E. G., & Misantone, L. J. (1975). Partial Kluver–Bucy syndrome produced by destroying temporal neocortex or amygdala. Brain Research 94, 347359.Google Scholar
Ingvar, M., Ghatan, P. H., Wirsen–Meurling, A., Risberg, J., Von Heijne, G., Stone–Elander, S., & Ingvar, D. H. (1998). Alcohol activates the cerebral reward system in man. Journal of Studies on Alcohol 59, 258269.Google Scholar
Iwata, J., & LeDoux, J. (1988). Dissociation of associative and nonassociative concominants of classical fear conditioning in the freely behaving rat. Behavioral Neuroscience 102, 6676.Google Scholar
Jensen, J., McIntosh, A. R., Crawley, A. P., Mikulis, D. J., Remington, G., & Kapur, S. (2003). Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40, 12511257.Google Scholar
Jones, B. E. (1995). Reticular Formation. Cytoarchitecture, transmitters and projections. In G. Paxinos (Ed.), The rat nervous system (pp. 155171). London: Academic Press.
Jones, B. E. (2003). Arousal systems. Frontiers in Bioscience 8, 438451.Google Scholar
Jones, N. A., & Fox, N. A. (1992). Electroencephalogram asymmetry during emotionally evocative films and its reaction to positive and negative affectivity. Brain and Cognition 20, 280299.Google Scholar
Kagan, J. (2003). Behavioral Inhibition as a temperamental category. In R. J. Davidson, K. R. Scherer, & H. Hill Goldsmith (Eds.), Handbook of affective sciences (pp. 320331). New York: Oxford University Press.
Kalin, N. H., Larson, C., Shelton, S. E., & Davidson, R. J. (1998). Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behavioral Neuroscience 112, 286292.Google Scholar
Kalin, N. H., & Shelton, S. E. (2003). Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Annals of the New York Academy of Science 1008, 189200.Google Scholar
Kaneko, T., Itoh, K., Shigemoto, R., & Mizuno, N. (1989). Glutanimase-like immunoreactivity in the lower brainstem and cerebellum of the adult rat. Neuroscience 32, 7998.Google Scholar
Keil, A., Muller, M. M., Gruber, T., Wienbruch, C., Stolarova, M., & Elbert, T. (2001). Effects of emotional arousal in the cerebral hemispheres: A study of oscillatory brain activity and event-related potentials. Clinical Neurophysiology 112, 20572068.Google Scholar
Kennedy, S. H., Evans, K. R., Kruger, S., Mayberg, H. S., Meyer, J. H., McCann, S., Arifuzzman, A. I., Houle, S., & Vaccarino, F. J. (2001). Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. American Journal of Psychiatry 158, 899905.Google Scholar
Koch, M., & Ebert, U. (1993). Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/basal nucleus of Meynert to the pontine reticular formation. Experimental Brain Research 93, 231241.Google Scholar
Kopp, C., & Neufeld, S. (2003). Emotional development during infancy. In R. J. Davidson, K. R. Scherer, & H. Hill Goldsmith (Eds.), Handbook of affective sciences (pp. 347374). Oxford: Oxford University Press.
Kravitz, H. M., Fawcett, J., & Newman, A. J. (1993). Alprazolam and depression: A review of risks and benefits. Journal of Clinical Psychiatry, 54(Suppl.), 7885.Google Scholar
Kring, A. M., Barrett, L. F., & Gard, D. E. (2003). On the broad applicability of the affective circumplex: Representations of affective knowledge among schizophrenia patients. Psychological Science 14, 207214.Google Scholar
LaBar, K. S., & LeDoux, J. (2003). Emotional learning circuits in animals and humans. In R. J. Davidson, K. R. Scherer, & H. H. Goldsmith (Eds.), Handbook of affective sciences (pp. 5265). New York: Oxford University Press.
Lang, P., Greenwald, M., Bradley, M., & Hamm, A. (1993). Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261273.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). Emotion, motivation, and anxiety: Brain mechanisms and psychophysiology. Biological Psychiatry 44, 12481263.Google Scholar
Larsen, R. J., & Diener, E. (1992). Promises and problems with the circumplex model of emotion. In M. S. Clark (Ed.), Review of personality and social psychology (Vol. 13, pp. 2559). Newbury Park, CA: Sage.
Lazarus. (1991). Emotion and adaptation. New York: Oxford University Press.
LeDoux, J. (1996). The emotional brain. New York: Simon & Schuster.
Levine, J., Cole, D. P., Chengappa, K. N., & Gershon, S. (2001). Anxiety disorders and major depression, together or apart. Depression and Anxiety 14, 94104.Google Scholar
Mathew, R. J., Wilson, W. H., Humphreys, D. F., Lowe, J. V., & Wiethe, K. E. (1992). Regional cerebral blood flow after marijuana smoking. Journal of Cerebral Blood Flow Metabolism 12, 750758.Google Scholar
Mefford, I., & Potter, W. (1989). A neuroanatomical and biochemical basis for attention deficit disorder with hyperactivity in children: A defect in tonic adrenaliine mediated inhibition of locus coeruleus stimulation. Medical Hypothesis 29, 3242.Google Scholar
Mick, M. A., & Telch, M. J. (1998). Social anxiety and history of behavioral inhibition in young adults. Journal of Anxiety Disorders 12, 120.Google Scholar
Mora, F., Avrith, D. B., & Rolls, E. T. (1980). An electrophysiological and behavioural study of self-stimulation in the orbitofrontal cortex of the rhesus monkey. Brain Research Bulletin 5, 111115.Google Scholar
Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology 1, 455473.Google Scholar
Myers, R. E., & Swett, C., Jr. (1970). Social behavior deficits of free-ranging monkeys after anterior temporal cortex removal: A preliminary report. Brain Research 18, 551556.Google Scholar
Nakamura, H., Tanaka, A., Nomoto, Y., Ueno, Y., & Nakayama, Y. (2000). Activation of fronto–limbic system in the human brain by cigarette smoking: Evaluated by a CBF measurement. Keio Journal of Medicine, 49(Suppl. 1), A122A124.Google Scholar
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. (2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognotive Neuroscience 14, 12151229.Google Scholar
Ortony, A., & Turner, T. J. (1990). What's basic about basic emotions? Psychology Review 97, 315331.Google Scholar
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.
Pine, D. S., Cohen, P., Johnson, J. G., & Brook, J. S. (2002). Adolescent life events as predictors of adult depression. Journal of Affective Disorders 68, 4957.Google Scholar
Pliszka, S. R. (1998). Comorbidity of attention-deficit/hyperactivity disorder with psychiatric disorder: An overview. Journal of Clinical Psychiatry, 59(Suppl. 7), 5058.Google Scholar
Rauch, S. L., Savage, C. R., Alpert, N. M., Fischman, A. J., & Jenike, M. A. (1997). The functional neuroanatomy of anxiety: A study of three disorders using positron emission tomography and symptom provocation. Biological Psychiatry 42, 446452.Google Scholar
Rauch, S. L., Shin, L. M., & Wright, C. I. (2003). Neuroimaging studies of amygdala function in anxiety disorders. Annals of the New York Academy of Science 985, 389410.Google Scholar
Rickels, K., Schweizer, E., Case, W. G., DeMartinis, N., Greenblatt, D. J., Mandos, L. A., & Garcia Espana, F. G. (1998). Nefazodone in major depression: Adjunctive benzodiazepine therapy and tolerability. Journal of Clinical Psychopharmacology 18, 145153.Google Scholar
Robinson, D., Wu, H., Munne, R. A., Ashtari, M., Alvir, J. M., Lerner, G., Koreen, A., Cole, K., & Bogerts, B. (1995). Reduced caudate nucleus volume in obsessive–compulsive disorder. Archives of General Psychiatry 52, 393398.Google Scholar
Robinson, R. G., Starr, L. B., & Price, T. R. (1984). A two year longitudinal study of mood disorders following stroke: Prevalence and duration at six month follow-up. British Journal of Psychiatry 144, 256262.Google Scholar
Rolls, E. T., Burton, M. J., & Mora, F. (1980). Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Research 194, 339357.Google Scholar
Rosen, J. B., Hitchcock, J. M., Sananes, C. B., Miserendino, M. J., & Davis, M. (1991). A direct projection from the central nucleus of the amygdala to the acoustic startle pathway: Anterograde and retrograde tracing studies. Behavioral Neuroscience 105, 817825.Google Scholar
Rosenbaum, J. F., Biederman, J., Gersten, M., Hirshfeld, D. R., Meminger, S. R., Herman, J. B., Kagan, J., Reznick, J. S., & Snidman, N. (1988). Behavioral inhibition in children of parents with panic disorder and agoraphobia. A controlled study. Archives of General Psychiatry 45, 463470.Google Scholar
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology 39, 11611178.Google Scholar
Russell, J. A. (1983). Pancultural aspects of human conceptual organization of emotions. Journal of Personality and Social Psychology 45, 12811288.Google Scholar
Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review 110, 145172.Google Scholar
Russell, J. A., & Bullock, M. (1985). Multidimensional scaling of emotional facial expressions: Similarity from preschoolers to adults. Journal of Personality and Social Psychology 48, 12901298.Google Scholar
Russell, J. A., & Carroll, J. M. (1999). On the bipolarity of positive and negative affect. Psychology Bulletin 125, 330.Google Scholar
Russell, J. A., & Fehr, B. (1994). Fuzzy concepts in a fuzzy hierarchy: Varieties of anger. Journal of Personality and Social Psychology 67, 186205.Google Scholar
Saarni, C. (1999). Development of emotional competence. New York: Guilford Press.
Sackeim, H. A., Greenberg, M. S., Weiman, A. L., Gur, R. C., Hungerbuhler, J. P., & Geschwind, N. (1982). Hemispheric asymmetry in the expression of positive and negative emotions. Neurologic evidence. Archives of Neurology 39, 210218.Google Scholar
Sander, D., Grafman, J., & Zalla, T. (2003). The human amygdala: An evolved system for relevance detection. Review of Neuroscience 14, 303316.Google Scholar
Sasson, Y., Chopra, M., Harrari, E., Amitai, K., & Zohar, J. (2003). Bipolar comorbidity: From diagnostic dilemmas to therapeutic challenge. International Journal of Neuropsychopharmacology 6, 139144.Google Scholar
Schaffer, C. E., Davidson, R. J., & Saron, C. (1983). Frontal and partietal electroencephalogram asymmetry in depressed and nondepressed subjects. Biological Psychiatry 18, 753762.Google Scholar
Schlosberg, H. (1952). The description of facial expressions in terms of two dimensions. Journal of Experimental Psychology 44, 229237.Google Scholar
Seymour, B., O'Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J., Friston, K. J., & Frackowiak, R. S. (2004). Temporal difference models describe higher-order learning in humans. Nature 429, 664667.Google Scholar
Shin, L. M., Kosslyn, S. M., McNally, R. J., Alpert, N. M., Thompson, W. L., Rauch, S. L., Macklin, M. L., & Pitman, R. K. (1997). Visual imagery and perception in posttraumatic stress disorder. A positron emission tomographic investigation. Archives of General Psychiatry 54, 233241.Google Scholar
Skinner, R., Homma, Y., & Garcia–Rill, E. (2004). Arousal mechanisms related to posture and locomotion: 2 Ascending modulation. Progress in Brain Research 143, 291298.Google Scholar
Small, D. M., Gregory, M. D., Mak, Y. E., Gitelman, D., Mesulam, M. M., & Parrish, T. (2003). Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39, 701711.Google Scholar
Sroufe, L. A. (1979). Socioemotional development. In D. Osofsky (Ed.), Handbook of infant development (pp. 462516). New York: Wiley.
Steriade, M. (1996). Arousal: Revisiting the reticular activating system. Science 272, 225226.Google Scholar
Swann, A., Katz, M., Bowden, C., Berman, N., & Stokes, P. (1999). Psychomotor performance and monoanime function in bipolar and unipolar affective disorders. Biological Psychiatry 45, 979988.Google Scholar
Thayer, R. E. (1989). The origin of everyday moods: Managing energy, tension and stress. New York: Oxford University Press.
Tomkins, S. S. (1962, 1963). Affect, imagery, consciousness (Vols. I & II). New York: Springer.
Tucker, D. M., Stenslie, C. E., Roth, R. S., & Shearer, S. L. (1981). Right frontal lobe activation and right hemisphere performance decrement during a depressed mood. Archives of General Psychiatry 38, 169174.Google Scholar
Ucles, P., Lorente, S., & Rosa, F. (1996). Neurophysiological methods testing the psychoneural basis of attention deficit hyperactivity disorder. Child Nervous Systems 12, 215217.Google Scholar
Volkow, N. D., Mullani, N., Gould, L., Adler, S. S., Guynn, R. W., Overall, J. E., & Dewey, S. (1988). Effects of acute alcohol intoxication on cerebral blood flow measured with PET. Psychiatry Research 24, 201209.Google Scholar
Warner, V., Weissman, M. M., Mufson, L., & Wickramaratne, P. (1999). Grandparents, parents, and grandchildren at high risk for depression: A three-generation study. Journal of the American Academy of Child and Adolescent Psychiatry 38, 289296.Google Scholar
Watson, D., & Clark, L. A. (1992). On traits and temperament: General and specific factors of emotional experience and their relation to the five-factor model. Journal of Personality 60, 441475.Google Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scale. Journal of Personality and Social Psychology 54, 10631070.Google Scholar
Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. Journal of Personality and Social Psychology 76, 820838.Google Scholar
Weiskrantz, L. (1956). Behavioral changes associated with ablation of the amygdaloid complex in monkeys. Journal of Comparative Physiology and Psychology 49, 381391.Google Scholar
Weizman, A., & Weizman, R. (2000). Serotonin transporter polymorphism and response to SSRIs in major depression and relevance to anxiety disorders and substance abuse. Pharmacogenomics 1, 335341.Google Scholar
Wellman, H. M., Harris, P. L., Banerjee, M., & Sinclair, A. (1995). Early understanding of emotion: Evidence from natural language. Cognition and Emotion 9, 117149.Google Scholar
Widen, S., & Russell, J. A. (2003). A closer look at preschoolers' freely produced labels for facial expressions. Developmental Psychology 39, 114128.Google Scholar
Wu, J. C., Buchsbaum, M. S., Hershey, T. G., Hazlett, E., Sicotte, N., & Johnson, J. C. (1991). PET in generalized anxiety disorder. Biological Psychiatry 29, 11811199.Google Scholar