Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T22:11:13.372Z Has data issue: false hasContentIssue false

Disentangling genes, attachment, and environment: A systematic review of the developmental psychopathology literature on gene–environment interactions and attachment

Published online by Cambridge University Press:  25 March 2019

Lisa Golds
Affiliation:
School of Health in Social Science, University of Edinburgh, Scotland, UK
Karina de Kruiff
Affiliation:
School of Health in Social Science, University of Edinburgh, Scotland, UK
Angus MacBeth*
Affiliation:
School of Health in Social Science, University of Edinburgh, Scotland, UK
*
Author for correspondence: Angus MacBeth, School of Health in Social Science, University of Edinburgh, Rm 3.06A, Doorway 6, Medical Quad, Teviot Place Edinburgh, EH8 9AG; E-mail: angus.macbeth@ed.ac.uk.

Abstract

The role of genetics in relation to attachment is of continued interest to developmental psychology. Recent research has attempted to disentangle genetic main effects, environmental effects, and gene and environment (G × E) interactions in the development of attachment security/insecurity and disorganization. We systematically reviewed associations between gene markers and attachment, including G × E interactions, identifying 27 eligible studies. Inconsistent results emerged for associations between both gene effects and G × E interactions on attachment organization. Where G × E interactions used attachment as the environmental factor in the interaction, we observed more consistent results for differential susceptibility of G × E interactions on offspring behavior. Small sample size and heterogeneity in measurement of environmental factors impacted on comparability of studies. From these results, we propose that the future of research into the role of genetic effects in attachment lies in further exploration of G × E interactions, particularly where attachment acts as an environmental factor impacting on other child developmental outcomes emerging from the caregiving environment, consistent with differential susceptibility approaches to developmental psychopathology. In addition, from a methodological perspective, establishing the role of gene markers in such models will require a shift toward contemporary genomics, including genome-wide analysis (including novel genes and chromosomal loci), and epigenetic individual variations.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M. S. (1979). Infant-mother attachment. American Psychologist, 34, 932937. doi:10.1037/0003-066X.34.10.932CrossRefGoogle ScholarPubMed
Ainsworth, M., Blehar, M., Waters, E., & Wall, S. (1978). Patterns of attachment: A psychological study of the strange situation. Hillsdale, NJ: Erlbaum.Google Scholar
Bakermans-Kranenburg, M. J., Dobrova-Krol, N., & van IJzendoorn, M. (2011). Impact of institutional care on attachment disorganization and insecurity of Ukrainian preschooler: Protective effect of the long variant of the serotonin transporter gene (5HTT). International Journal of Behavioral Development, 36, 1118. doi:10.1177/0165025411406858CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene-environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409. doi:10.1002/dev.20152CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Research review: Genetic vulnerability or differential susceptibility in child development: The case of attachment. Journal of Child Psychology and Psychiatry, 48, 11601173. doi:10.1111/j.1469-7610.2007.01801.xCrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952. doi:10.1017/S0954579410000635CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. (2014). A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatric Genetics, 24, 4551. doi:10.1097/YPG.0b013e3283643684CrossRefGoogle ScholarPubMed
Barbaro, N., Boutwell, B. B., Barnes, J. C., & Shackelford, T. K. (2017). Rethinking the transmission gap: What behavioral genetics and evolutionary psychology mean for attachment theory: A comment on Verhage et al. (2016). Psychological Bulletin, 143, 107113. doi:10.1037/bul0000066CrossRefGoogle Scholar
Barry, R. A., Kochanska, G., & Philibert, R. A. (2008). G x E interaction in the organization of attachment: Mothers’ responsiveness as a moderator of children's genotypes. Journal of Child Psychology and Psychiatry, 49, 13131320. doi:10.1111/j.1469-7610.2008.01935.xCrossRefGoogle Scholar
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15, 301309. doi:10.1016/j.tics.2011.05.002Google ScholarPubMed
Beaver, K. M., Eagle Shutt, J., Vaughn, M. G., DeLisi, M., & Wright, J. P. (2012). Genetic influences on measures of parental negativity and childhood maltreatment: An exploratory study testing for gene x environment correlations. Journal of Contemporary Criminal Justice, 28, 273292. doi:10.1177/1043986212450220CrossRefGoogle Scholar
Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-control regulation. Journal of Child Psychology & Psychiatry, 52, 619626. doi:10.1111/j.1469- 7610.2010.02327.xCrossRefGoogle ScholarPubMed
Bernier, A., Matte-Gagne, C., Belanger, M. E., & Whipple, N. (2014) Taking stock of two decades of attachment transmission gap: Broadening the assessment of maternal behavior. Child Development, 85, 18521865. doi:10.1111/cdev.12236Google ScholarPubMed
Bokhorst, C. L., Bakermans-Kranenburg, M. J., Fearon, R. M., van IJzendoorn, M. H., Fonagy, P., & Schuengel, C. (2003). The importance of shared environment in mother-infant attachment security: A behavioral genetic study. Child Development, 74, 17691782. doi:10.1046/j.1467-8624.2003.00637.xCrossRefGoogle ScholarPubMed
Borelli, J. L., Smiley, P. A., Rasmussen, H. F., Gómez, A., Seaman, L. C., & Nurmi, E. L. (2017). Interactive effects of attachment and FKBP5 genotype on school-aged children's emotion regulation and depressive symptoms. Behavioural Brain Research, 325, 278289. doi:10.1016/j.bbr.2016.07.035CrossRefGoogle ScholarPubMed
Bos, P. A. (2016). The endocrinology of human caregiving and its intergenerational transmission. Development and Psychopathology, 29, 971999. doi:10.1017/S0954579416000973CrossRefGoogle ScholarPubMed
Bosmans, G., Young, J. F., & Hankin, B. L. (2018). NR3C1 methylation as a moderator of the effects of maternal support and stress on insecure attachment development. Developmental Psychology, 54, 2938. doi:10.1037/dev0000422CrossRefGoogle ScholarPubMed
Bowlby, J. (1969). Attachment and loss: Vol. 1. Attachment. New York: Basic Books.Google Scholar
Brumariu, L. E., Bureau, J.-F., Nemoda, Z., Sasvari-Szekely, M., & Lyons-Ruth, K. (2016). Attachment and temperament revisited: Infant distress, attachment disorganization and the serotonin transporter polymorphism. Journal of Reproductive and Infant Psychology, 34, 7789. doi:10.1080/02646838.2015.1072764CrossRefGoogle ScholarPubMed
Carter, C. S. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23, 779818. doi:10.1016/S0306-4530(98)00055-9CrossRefGoogle ScholarPubMed
Cassidy, J., & Marvin, R. (1992). Attachment organization in preschool children: Procedures and coding manual. Unpublished Manual, University of Virginia, Charlottesville, VA.Google Scholar
Champagne, F. A. (2016). Epigenetic legacy of parental experiences: Dynamic and interactive pathways to inheritance. Development and Psychopathology, 28(4, Pt. 2), 12191228. doi:10.1017/S0954579416000808CrossRefGoogle ScholarPubMed
Chisholm, J. S. (1996). The evolutionary ecology of attachment organization. Human Nature, 7, 137. doi:10.1007/BF02733488Google ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600. doi:10.1017/S0954579400007318CrossRefGoogle Scholar
Cicchetti, D., Rogosch, F. A., & Toth, S. L. (2011). The effects of child maltreatment and polymorphisms of the serotonin transporter and dopamine D4 receptor genes on infant attachment and intervention efficacy. Development and Psychopathology, 23, 357372. doi:10.1017/S0954579411000113CrossRefGoogle ScholarPubMed
Cyr, C., Euser, E. M., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2010). Attachment security and disorganization in maltreating and high-risk families: A series of meta-analyses. Development and Psychopathology, 22, 87108. doi:10.1017/S0954579409990289CrossRefGoogle ScholarPubMed
Denham, S. A., Blair, K. A., DeMulder, E., Levitas, J., Sawyer, K., Auerbach-Major, S., & Queenan, P. (2003). Preschool emotional competence: Pathway to social competence? Child Development, 74, 238256. doi:10.1111/1467-8624.0053CrossRefGoogle ScholarPubMed
De Wolff, M., & van IJzendoorn, M. H. (1997). Sensitivity and attachment: A meta-analysis on parental antecedents of infant attachment. Child Development, 68, 571591. doi:10.2307/1132107CrossRefGoogle ScholarPubMed
Drury, S. S., Gleason, M. M., Theall, K. P., Smyke, A. T., Nelson, C. A., Fox, N. A., & Zeanah, C. H. (2012). Genetic sensitivity to the caregiving context: The influence of 5HTTLPR and BDNF val66met on indiscriminate social behavior. Physiology and Behavior, 106, 728735. doi:10.1016/j.physbeh.2011.11.014CrossRefGoogle ScholarPubMed
Dudley, K. J., Li, X., Kobor, M. S., Kippin, T. E., & Bredy, T. W. (2011). Epigenetic mechanisms mediating vulnerability and resilience to psychiatric disorders. Neuroscience and Biobehavioural Reviews, 35, 15441551. doi:10.1016/j.neubiorev.2010.12.016CrossRefGoogle ScholarPubMed
Ebstein, R. P., Israel, S., Chew, S. H., Zhong, S., & Knafo, A. (2010). Genetics of human social behavior. Neuron, 65, 831844. doi:10.1016/j.neuron.2010.02.020CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary-neurodevelopment theory. Development and Psychopathology, 23, 728. doi:10.1017/S0954579410000611CrossRefGoogle ScholarPubMed
Englund, M. M., Kuo, S. I., Puig, J., & Collins, W. A. (2011). Early roots of adult competence: The significance of close relationships from infancy to early adulthood. International Journal of Behavioral Development, 35, 490496. doi:10.1177/0165025411422994CrossRefGoogle ScholarPubMed
Esposito, G., Setoh, P., Shinohara, K., & Bornstein, M. H. (2017). (Preface) The development of attachment: Integrating genes, brain, behaviour, and environment. Behavioural Brain Research, 325, 8789. doi:10.1016/j.bbr.2017.03.025CrossRefGoogle Scholar
Fraley, R. C., Heffernan, M. E., Vicary, A. M., & Brumbaugh, C. C. (2011). The experiences in close relationships-relationship structures questionnaire: A method for assessing attachment orientations across relationships. Psychological Assessment, 23, 615625. doi:10.1037/a0022898CrossRefGoogle ScholarPubMed
Fraley, R. C., Roisman, G. I., Booth-Laforce, C., Owen, M. T., & Holland, A. S. (2013). Interpersonal and genetic origins of adult attachment styles: A longitudinal study from infancy to early adulthood. Journal of Personality and Social Psychology, 104, 817838. doi:10.1037/a0031435CrossRefGoogle ScholarPubMed
Gartstein, M. A., & Skinner, M. K. (2017). Prenatal influences on temperament development: The role of environmental epigenetics. Development and Psychopathology, 12, 135. doi:10.1017/S0954579417001730Google Scholar
Gervai, J., Nemoda, Z., Lakatos, K., Ronai, Z., Toth, I., Ney, K., & Sasvari-Szekely, M. (2005). Transmission disequilibrium tests confirm the link between DRD4 gene polymorphism and infant attachment. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 132, 126130. doi:10.1002/ajmg.b.30102CrossRefGoogle Scholar
Gervai, J., Novak, A., Lakatos, K., Toth, I., Danis, I., Ronai, Z., … Lyons-Ruth, K. (2007). Infant genotype may moderate sensitivity to maternal affective communications: Attachment disorganization, quality of care, and the DRD4 polymorphism. Social Neuroscience, 2, 307319. doi:10.1080/17470910701391893CrossRefGoogle ScholarPubMed
Graffi, J., Moss, E., Jolicoeur-Martineau, A., Moss, G., Lecompte, V., Pascuzzo, K., … Wazana, A. (2015). Preschool children without 7-repeat DRD4 gene more likely to develop disorganized attachment style. McGill Science Undergraduate Research Journal, 10, 3136.Google ScholarPubMed
Graffi, J., Moss, E., Jolicoeur-Martineau, A., Moss, G., Lecompte, V., Pascuzzo, K., … Wazana, A. (2018). The dopamine D4 receptor gene, birth weight, maternal depression, maternal attention, and the prediction of disorganized attachment at 36-months of age: A prospective gene x environment analysis. Infant Behavior and Development, 50, 6477. doi:10.1016/j.infbeh.2017.11.004CrossRefGoogle Scholar
Green, J., Stanley, C., Smith, V., & Goldwyn, R. (2000). A new method of evaluating attachment representations in young school-age children: The Manchester Child Attachment Story Task. Attachment & Human Development, 2, 4870. doi:10.1080/146167300361318CrossRefGoogle ScholarPubMed
Hertzman, C., & Boyce, T. (2010). How experience gets under the skin to create gradients in developmental health. Annual Review of Public Health, 31, 329347. doi:10.1146/annurev.publhealth.012809.103538CrossRefGoogle ScholarPubMed
Humphreys, K. L., Zeanah, C. H., Nelson, C. A., Fox, N. A., & Drury, S. S. (2015). Serotonin transporter genotype (5HTTLPR) moderates the longitudinal impact of atypical attachment on externalizing behavior. Journal of Developmental and Behavioral Pediatrics, 36, 409416. doi:10.1097/DBP.0000000000000171CrossRefGoogle ScholarPubMed
Hygen, B. W., Guzey, I. C., Belsky, J., Berg-Nielson, T. S., & Wichstrøm, L. (2014). Catechol-O-methyltransferase Val158Met genotype moderates the effect of disorganized attachment on social development in young children. Development and Psychopathology, 26, 947961. doi:10.1017/S0954579414000492CrossRefGoogle ScholarPubMed
Ising, M., Depping, A. M., Siebertz, A., Lucae, S., Unschuld, P. G., Kloiber, S., … Holsboer, F. (2008). Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. European Journal of Neuroscience, 28, 389398. doi:10.1111/j.1460-9568.2008.06332.xCrossRefGoogle ScholarPubMed
Jönsson, E. G., Nöthen, M. M., Grünhage, F., Farde, L., Nakashima, Y., Propping, P., & Sedvall, G. C. (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Molecular Psychiatry, 4, 290296. doi:10.1038/sj.mp.4000532CrossRefGoogle ScholarPubMed
Keech, B., Crowe, S., & Hocking, D. R. (2018). Intranasal oxytocin, social cognition and neurodevelopmental disorders: A meta-analysis. Psychoneuroendocrinology, 87, 919. doi:10.1016/j.psyneuen.2017.09.022CrossRefGoogle ScholarPubMed
Kerns, K. A. (1994). A longitudinal examination of links between mother-child attachment and children's friendships in early childhood. Journal of Social and Personal Relationships, 11, 379381. doi:10.1177/0265407594113004CrossRefGoogle Scholar
Kochanska, G., Philibert, R. A., & Barry, R. A. (2009). Interplay of genes and early mother-child relationship in the development of self-regulation from toddler to preschool age. Journal of Child Psychology and Psychiatry, 50, 13311338. doi:10.1111/j.1469-7610.2008.02050.xCrossRefGoogle ScholarPubMed
Lakatos, K., Nemoda, Z., Toth., I., Ronai, Z., Ney, K., Sasvari-Szekely, M., & Gervai, J. (2002). Further evidence for the role of the dopamine D4 receptor (DRD4) gene in attachment disorganization: Interaction of the exon III 48-bp repeat and the -521 C/T promoter polymorphisms. Molecular Psychiatry, 7, 2731. doi:10.1038/sj/mp/4000986CrossRefGoogle ScholarPubMed
Lakatos, K., Toth, I., Nemoda, Z., Ney, K., Sasvari-Szekely, M., & Gervai, J. (2000). Dopamine D4 receptor (DRD4) gene polymorphism is associated with attachment disorganization. Molecular Psychiatry, 5, 633637. doi:10.1038/sj.mp.4000773CrossRefGoogle ScholarPubMed
Leerkes, E. M., Gedaly, L. R., Zhou, N., Calkins, S., Henrich, V. C., & Smolen, A. (2017). Further evidence of the limited role of candidate genes in relation to infant-mother attachment outcomes. Attachment and Human Development, 19, 76105. doi:10.1080/14616734.2016.1253759CrossRefGoogle ScholarPubMed
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531. doi:10.1126/science.274.5292.1527CrossRefGoogle ScholarPubMed
Letourneau, N., Giesbrecht, G. F., Bernier, F. P., & Joschko, J. (2014). How do interactions between early caregiving environment and genes influence health and behaviour? Biological Research for Nursing, 16, 8394. doi:10.1177/1099800412463602CrossRefGoogle Scholar
Li, Z., Hygen, B. W., Widaman, K. F., Berg-Nielson, T. S., Wichstrøm, L., & Belsky, J. (2016). Disorganization, COMT, and children's social behavior: The Norwegian hypothesis of legacy of disorganized attachment. Frontiers in Psychology, 7, 1013. doi:10.3389/fpsyg.2016.01013CrossRefGoogle ScholarPubMed
Luijk, M. P. C. M., Roisman, G. I., Haltigan, J. D., Tiemeier, H., Booth-LaForce, C., van IJzendoorn, M. H., … Bakermans-Kranenburg, M. J. (2011). Dopaminergic, serotonergic, and oxytonergic candidate genes associated with infant attachment security and disorganization? In search of main and interaction effects. Journal of Child Psychology and Psychiatry, 52, 12951307. doi:10.1111/j.1469-7610.2011.02440.xCrossRefGoogle ScholarPubMed
Luijk, M. P., Tharner, A., Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Jaddoe, V. W., Hofman, A., … Tiemeier, H. (2011). The association between parenting and attachment security is moderated by a polymorphism in the mineralocorticoid receptor gene: Evidence for differential susceptibility. Biological Psychology, 88, 3740. doi:10.1016/j.biopsycho.2011.06.005CrossRefGoogle ScholarPubMed
Luijk, M. P. C. M., Velders, F. P., Tharner, A., van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J., Jaddoe, V. W. V., … Tiemeier, H. (2010). FKBP5 and resistant attachment predict cortisol reactivity in infants: Gene-environment interaction. Psychoneuroendocrinology, 35, 14541461. doi:10.1016/j.psyneuen.2010.04.012CrossRefGoogle ScholarPubMed
Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American Psychologist, 56, 227238. doi:10.1037/0003-066X.56.3.227CrossRefGoogle ScholarPubMed
Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81, 4179. doi:10.1111/j.1467-8624.2009.01381.xCrossRefGoogle ScholarPubMed
Meins, E., Fernyhough, C., Wainwright, R., Das Gupta, M., & Fradley, E. (2002). Maternal mind-mindedness and attachment security as predictors of Theory of Mind understanding. Child Development, 73, 17151726. doi:10.1111/1467-8624.00501CrossRefGoogle ScholarPubMed
Mikulincer, M., & Shaver, P. R. (2007). Attachment in adulthood: Structure, dynamics, and change. New York: Guilford Press.Google Scholar
Milaneschi, Y., Lamers, F., Peyrot, W. J., Baune, B. T., Breen, G., Dehghan, A., … Penninx, B. W. J. H. (2017). Genetic association of major depression with atypical features and obesity-related immunometabolic dysregulations. JAMA Psychiatry, 74, 12141225. doi:10.1001/jamapsychiatry.2017.3016CrossRefGoogle ScholarPubMed
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLOS Med, 6, e1000097. doi:10.1371/journal.pmed.1000097CrossRefGoogle ScholarPubMed
Morin, A. M., Gatev, E., McEwen, L. M., MacIsaac, J. L., Lin, D. T. S., Koen, N., … Jones, M. J. (2017). Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs. Clinical Epigenetics, 9, 75. doi:10.1186/s13148-017-0370-2CrossRefGoogle ScholarPubMed
Mulder, R. H., Rijlaarsdam, J., Luijk, M. P., Verhulst, F. C., Felix, J. F., Tiemeier, H., … van IJzendoorn, M. H. (2017). Methylation matters: FK506 binding protein 51 (FKBP5) methylation moderates the associations of FKBP5 genotype and resistant attachment with stress regulation. Development and Psychopathology, 29, 491503. doi:10.1017/S095457941700013XCrossRefGoogle ScholarPubMed
Myin-Germeys, I., Oorschot, M., Collip, D., Lataster, J., Delespaul, P., & van Os, J. (2009). Experience sampling research in psychopathology: Opening the black box of daily life. Psychological Medicine, 39, 15331547. doi:10.1017/S0033291708004947CrossRefGoogle Scholar
O'Donnell, K. J., & Meaney, M. J. (2016). Fetal origins of mental health: The developmental origins of health and disease hypothesis. American Journal of Psychiatry, 174, 319328. doi:10.1176/appi.ajp.2016.16020138CrossRefGoogle ScholarPubMed
Papageorgiou, K. A., & Ronald, A. (2017). The genetic basis of psychological traits in infancy: Implications for understanding the causes of developmental psychopathology. In Centifani, L. & Williams, D. M. (Eds.), The Wiley handbook of developmental psychopathology (pp. 233258). Hoboken, NJ: Wiley-Blackwell.10.1002/9781118554470.ch11CrossRefGoogle Scholar
Pappa, I., Szekely, E., Mileva-Seitz, V. R., Luijk, M. P. C. M., Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., & Tiemeier, H. (2015). Beyond the usual suspects: A multidimensional genetic exploration of infant attachment disorganization and security. Attachment and Human Development, 17, 288301. doi:10.1080/14616734.2015.1037316CrossRefGoogle ScholarPubMed
Propper, C. B. (2006). Infant behavioral and physiological regulation during the strange situation procedure at 12-months: Contributions of genotype and maternal behavior. Unpublished Manuscript, Duke University.Google Scholar
Raby, L., Chicchetti, D., Carlson, E. A., Cutuli, J. J., Englund, M. M., & Egeland, B. (2012). Genetic and caregiving-based contributions to infant attachment: Unique associations with distress reactivity and attachment security. Psychological Science, 23, 10161023. doi:10.1177/0956797612438265CrossRefGoogle ScholarPubMed
Roisman, G. I., Booth-Laforce, C., Belsky, J., Burt, K. B., & Groh, A. M. (2013). Molecular-genetic correlates of infant attachment: A cautionary tale. Attachment & Human Development, 15, 384406. doi:10.1080/14616734.2013.768790CrossRefGoogle ScholarPubMed
Roisman, G. I., & Fraley, R. C. (2008). A behaviour-genetic study of parenting quality, infant attachment security, and their covariation in a nationally representative sample. Developmental Psychology, 44, 831839. doi:10.1037/0012-1649.44.3.831CrossRefGoogle Scholar
Sameroff, A. J. (1983). Developmental systems: Contexts and evolution. In Kessen, W. (Series Ed.) & Mussen, P. H. (Vol. Ed.), Handbook of child psychology: Vol. 1. History, theories, and methods (pp. 238294). New York: Wiley.Google Scholar
Sen, S., Burmeister, M., & Ghosh, D. (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. American Journal of Medical Genetics. Part B Neuropsychiatric Genetics, 127B, 8589. doi:10.1002/ajmg.b.20158CrossRefGoogle ScholarPubMed
Slade, A. (1999). Representation, symbolization, and affect regulation in the concomitant treatment of a mother and child: Attachment theory and child psychotherapy. Psychoanalytic Inquiry, 19, 797830. doi:10.1080/07351699909534277CrossRefGoogle Scholar
Solomon, J., & George, C. (1999). Attachment disorganization. New York: Guilford Press.Google Scholar
Solomon, J., & George, C. (2011). Disorganization of maternal caregiving across two generations. In Solomon, J. & George, C. (Eds.), Disorganized attachment & caregiving (pp. 2551). New York: Guilford Press.Google Scholar
Solomon, J., George, C., & De Jong, A. (1995). Children classified as controlling at age six: Evidence of disorganized representational strategies and aggression at home and at school. Development and Psychopathology, 7, 447463. doi:10.1017/S0954579400006623CrossRefGoogle Scholar
Spangler, G., Johann, M., Ronai, Z., & Zimmerman, P. (2009). Genetic and environmental influence on attachment disorganization. Journal of Child Psychology and Psychiatry and Allied Disciplines, 50, 952961. doi:10.1111/j.1469-7610.2008.02054.xCrossRefGoogle ScholarPubMed
Thomas, A., & Chess, S. (1977). Temperament and development. New York: Brunner/Mazel.Google Scholar
Thompson, R. A. (1994). Emotion regulation: A theme in search of definition. Monographs of the Society for Research in Child Development, 59, 2552. doi:10.1111/j.1540-5834.1994.tb01276.xCrossRefGoogle ScholarPubMed
van IJzendoorn, M. H. (1995). Adult attachment representations, parental responsiveness, and infant attachment: A meta-analysis on the predictive validity of the Adult Attachment Interview. Psychological Bulletin, 117, 387403. doi:10.1037/0033-2909.117.3.387CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2006). DRD4 7-repeat polymorphism moderates the association between maternal unresolved loss or trauma and infant disorganization. Attachment and Human Development, 8, 291307. doi:10.1080/14616730601048159CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. (2019). Bridges across the intergenerational transmission of attachment gap. Current Opinion in Psychology, 25, 3136. doi:10.1016/j.copsyc.2018.02.014CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., Caspers, K., Bakermans-Kranenburg, M. J., Beach, S. R., & Philibert, R. (2010). Methylation matters: Interaction between methylation density and serotonin transporter genotype predicts unresolved loss or trauma. Biological Psychiatry, 68, 405407. doi:10.1016/j.biopsych.2010.05.008CrossRefGoogle ScholarPubMed
Verhage, M. L., Pasco Fearon, R. M., Schuengel, C., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Madigan, S., … Brisch, K-H., The Collaboration on Attachment Transmission Synthesis. (2018). Examining ecological constraints on the intergenerational transmission of attachment via individual participant data meta-analysis. Child Development, 89, 20232037. doi:10.1111.cdev.13085CrossRefGoogle ScholarPubMed
Verhage, M. L., Schuengel, C., Madigan, S., Fearon, R. M. P., Oosterman, M., Cassibba, R., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2016). Narrowing the transmission gap: A synthesis of three decades of research on intergenerational transmission of attachment. Psychological Bulletin, 142, 337366. doi:10.1037/bul0000038CrossRefGoogle ScholarPubMed
Viddal, K. R., Berg-Neilsen, T. S., Belsky, J., & Wichstrøm, L. (2017). Change in attachment predicts change in emotion regulation particularly among 5-HTTLPR short-allele homozygotes. Developmental Psychology, 53, 13161329. doi:10.1037/dev0000321CrossRefGoogle ScholarPubMed
Wadhwa, P. D., Buss, C., Entringer, S., & Swanson, J. M. (2009). Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Seminars in Reproductive Medicine, 27, 358368. doi:10.1055/s-0029-1237424CrossRefGoogle ScholarPubMed
Wang, E., Ding, Y. C., Flodman, P., Kidd, J. R., Kidd, K. K., Grady, D. L., … Moyzis, R. K. (2004). The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. American Journal of Human Genetics, 74, 931944. doi:10.1086/420854CrossRefGoogle ScholarPubMed
Williams, J. W., Plassman, B. L., Burke, J., Holsinger, T., & Benjamin, S. (2010). Preventing Alzheimer's disease and cognitive decline. Evidence Report / Technology Assessment No.193. (Prepared by the Duke evidence-based practice centre under contract No. HHSA 290-2007-10066-I). Rockville, MD: Agency for Healthcare Research and Quality.Google Scholar
Zeanah, C. H., Keyes, A., & Settles, L. (2003). Attachment relationship experiences and childhood psychopathology. Annals of the New York Academy of Sciences, 1008, 2230. doi:10.1196/annals.1301.003CrossRefGoogle ScholarPubMed
Zimmerman, P., Mohr, C., & Spangler, G. (2009). Genetic and attachment influences on adolescents’ regulation of autonomy and aggressiveness. Journal of Child Psychology and Psychiatry, 50, 13391347. doi:10.1111/j.1469-7610.2009.02158CrossRefGoogle Scholar