Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-7rmfg Total loading time: 0.616 Render date: 2022-07-07T10:13:49.900Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology

Published online by Cambridge University Press:  04 March 2009

Allan N. Schore*
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine
*
Allan N. Schore, 9817 Sylvia Avenue, Northridge, CA 91324.

Abstract

The maturation of corticolimbic systems that neurobiologically mediate essential affective and social regulatory functions is experience dependent. During the first and second years of life, the infant's affective experiences, especially those embedded in the relationship with the primary caregiver, elicit patterns of psychobiological alterations that influence the activity of subcortically produced trophic bioamines, peptides, and steroids that regulate the critical period growth and organization of the developing neocortex. Interactive attachment experiences of psychobiological attunemcnt, stressful misattunement, and stress-regulating repair and reattunement that maximize positive and minimize negative affect are imprinted into the orbitofrontal cortex — the hierarchical apex of the limbic system that is expanded in the early developing right hemisphere. During the critical period of maturation of this system, prolonged episodes of intense and unregulated interactive stress are manifest in disorganizing experiences of heightened negative affect and altered levels of stress hormones, and this chaotic biochemical alteration of the internal environment triggers an extensive apoptotic panellation of corticolimbic circuitries. In this manner less than optimal affect-regulating experiences with the primary caregiver are imprinted into the circuits of this frontolimbic system that is instrumental to attachment functions, thereby producing orbitofrontal organizations that neurobiologically express different patterns of insecure attachments. Such pathomorphogenetic outcomes result in structurally defective systems that, under stress, inefficiently regulate subcortical mechanisms that mediate the physiological processes that underlie emotion. The functional impairments of the cortical-subcortical circuitries of this prefrontal system are implicated in an enduring vulnerability to and the pathophysiology of various later forming psychiatric disorders.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M. D. S. (1967). Infancy in Uganda: Infant care and the growth of love. Baltimore: Johns Hopkins University Press.Google Scholar
Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind. Cambridge: MIT Press.Google Scholar
Bartolome, J. V., Bartolome, M. B., Lorber, B. A., Dileo, S. J., & Schanberg, S. M. (1991). Effects of central administration of beta-endorphin on brain and liver DNA synthesis in preweanling rats. Neuroscience, 40, 289294.CrossRefGoogle ScholarPubMed
Bateson, P., & Hinde, R. A. (1987). Developmental changes in sensitivity to experience. In Bornstein, M. H. (Ed.), Sensitive periods in development: Interdisciplinary perspectives (pp. 1934). Hillsdale, NJ: Erlbaum.Google Scholar
Beato, M., Arnemann, J., Chalepakis, G., Slater, E., & Wilman, T. (1987). Gene regulation by steroid hormones. Journal of Steroid Biochemistry, 27, 914.CrossRefGoogle ScholarPubMed
Beebe, B., & Lachmann, F. M. (1988a). Mother-infant mutual influence and precursors of psychic structure. In Goldberg, A. (Ed.), Progress in self psychology. Vol. 3 (pp. 325). Hillsdale, NJ: Analytic Press.Google Scholar
Beebe, B., & Lachmann, F. M. (1988b). The contribution of mother-infant mutual influence to the origins of self- and object relationships. Psychoanalytic Psychology, 5, 305337.CrossRefGoogle Scholar
Benes, F. M. (1994). Developmental changes in stress adaptation in relation to psychopathology. Development and Psychopathology, 6, 723739.CrossRefGoogle Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98, 459487.CrossRefGoogle ScholarPubMed
Blatt, S. J., Quinlan, D. M., & Chevron, E. (1990). Empirical investigations of a psychoanalytic theory of depression. In Masling, J. (Ed.), Empirical studies of psychoanalytic theories. Vol. 3 (pp. 89147). Hillsdale, NJ: Analytic Press.Google Scholar
Bowlby, J. (1969). Attachment and loss, Vol. I: Attachment. New York: Basic Books.Google Scholar
Bowlby, J. (1988). A secure base (2nd ed.). New York: Basic Books.Google Scholar
Bozarth, M. A., & Wise, R. A. (1981). Intracranial self-administration of morphine into the ventral tegmental area of rats. Life Sciences, 28, 551555.CrossRefGoogle ScholarPubMed
Brent, L., & Resch, R. C. (1987). A paradigm of infant-mother reciprocity: A reexamination of “emotional refueling.” Psychoanalytic Psychology, 4, 1531.CrossRefGoogle Scholar
Bretherton, I. (1985). Attachment theory: Retrospect and prospect. Monographs of the Society for Research in Child Development, 50, 335.CrossRefGoogle Scholar
Brown, M. R., Fisher, L. A., Rivier, J., Spiess, J., Rivier, C., & Vale, W. (1982). Corticotropin-releasing factor: Effects on the sympathetic nervous system and oxygen consumption. Life Sciences, 30, 207219.CrossRefGoogle ScholarPubMed
Carlson, M., Earls, F., & Todd, R. D. (1988). The importance of regressive changes in the development of the nervous system: Towards a neurobiological theory of child development. Psychiatric Development, 1, 122.Google Scholar
Cassidy, J. (1994). Emotion regulation: Influences of attachment relationships. Monographs of the Society for Research in Child Development, 59, 228249.CrossRefGoogle ScholarPubMed
Chapple, E. D. (1970). Experimental production of transients in human interaction. Nature, (London), 228, 630633.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1994), Integrating developmental risk factors: Perspective from developmental psychopathology. In Nelson, C. A. (Ed.), Minnesota symposium on child psychology. Vol. 27, Threats to optimal development (pp. 285325). Hillsdale, NJ: Erlbaum.Google Scholar
Cicchetti, D., & Toth, S. L. (1991). A developmental perspective on internalizing and externalizing disorders. In Cicchetti, D. & Toth, S. L. (Eds.), Internalizing and externalizing expressions of dysfunction: Rochester symposium on developmental psychopathology, Vol. 2 (pp. 119). Hillsdale, NJ: Erlbaum.Google Scholar
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533549.CrossRefGoogle Scholar
Coe, C. L., Wiener, S. G., Rosenberg, L. T., & Levine, S. (1985). Endocrine and immune responses to separation and maternal loss in nonhuman primates. In Reite, M. & Field, T. (Eds.), The psychobiology of attachment and separation (pp. 163199). Orlando: Academic Press.CrossRefGoogle Scholar
Cole, P. M., Michel, M. K., & O'Donnell Teti, L. (1994). The development of emotion regulation and dysregulation: A clinical perspective. Monographs of the Society for Research in Child Development, 59, 73100.CrossRefGoogle ScholarPubMed
Cutting, J. (1992). The role of right hemisphere dysfunction in psychiatric disorders. British Journal of Psychiatry, 160, 583588.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1994). Descartes' error. New York: Grosset/Putnam.Google ScholarPubMed
Davidson, R. J., Ekman, P., Saron, C., Senulis, J., & Friesen, W. V. (1990). Approach/withdrawal and cerebral asymmetry: 1. Emotional expression and brain physiology. Journal of Personality and Social Psychology, 58, 330341.CrossRefGoogle Scholar
Dawson, G. (1994). Development of emotional expression and emotion regulation in infancy. In Dawson, G. & Fischer, K. W. (Eds.), Human behavior and the developing brain (pp. 346379). New York: Guilford Press.Google Scholar
DeKosky, S. T., Nonneman, A. J., & Scheff, S. W. (1982). Morphologic and behavioral effects of perinatal glucocorticoid administration. Physiology and Behavior, 29, 895900.CrossRefGoogle ScholarPubMed
Demos, V. (1991). Resiliency in infancy. In Dugan, T. F. & Coles, R. (Eds.), The child in our times: Studies in the development of resiliency. New York: Brunncr/Mazel.Google Scholar
Demos, V., & Kaplan, S. (1986). Motivation and affect reconsidered: Affect biographies of two infants. Psychoanalysis and Contemporary Thought, 9, 147221.Google Scholar
Diamond, A., & Doar, B. (1989). The performance of human infants on a measure of frontal cortex function, the delayed response task. Developmental Psychobiology, 22, 271294.CrossRefGoogle ScholarPubMed
Ebbesson, S. O. E. (1980). The panellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neural plasticity. Cell and Tissue Research, 213, 179212.CrossRefGoogle Scholar
Emde, R. N. (1983). The pre-representational self and its affective core. Psychoanalytic Study of the Child, 38, 165192.CrossRefGoogle Scholar
Emde, R. N. (1988). Development terminable and interminable. I. Innate and motivational factors from infancy. International Journal of Psycho-Analysis, 69, 2342.Google ScholarPubMed
Eppinger, H., & Hess, L. (1915). Vagotonia: A clinical study in vegetative neurology. Journal of Nervous and Mental Disease, 20, 193.Google Scholar
Fagen, R. (1977). Selection for optimal age-dependent schedules of play behavior. American Naturalist, 111, 395414.CrossRefGoogle Scholar
Falk, D., Hildebolt, C., Cheverud, J., Vannier, M., Helmkamp, R. C., & Konigsberg, L. (1990). Cortical asymmetries in frontal lobes of Rhesus monkeys (Macaca mulatta). Brain Research, 512, 4045.CrossRefGoogle Scholar
Field, T. (1985). Attachment as psychobiological attunement: Being on the same wavelength. In Reite, M. & Field, T. (Eds.), The psychobiology of attachment and separation (pp. 415454). Orlando: Academic Press.CrossRefGoogle Scholar
Fogel, A. (1982). Affect dynamics in early infancy: Affective tolerance. In Field, T. & Fogel, A. (Eds.), Emotion and early interaction. Hillsdale, NJ: Erlbaum.Google Scholar
Foote, S. L., & Morrison, S. H. (1991). Development of the noradrenergic, serotonergic, and dopaminergic innervation of the cortex. Current Topics in Developmental Biology, 21, 391423.CrossRefGoogle Scholar
Fox, N. A. (1991). If it's not left, it's right: Electroencephalography asymmetry and the development of emotion. American Psychologist, 46, 863872.CrossRefGoogle ScholarPubMed
Fraiberg, S. (1969). Libidinal object constancy and mental representation. Psychoanalytic Study of the Child, 24, 947.CrossRefGoogle ScholarPubMed
Freyd, J. J. (1987). Dynamic mental representations. Psychological Reviews, 94, 427438.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1985). The prefrontal cortex and temporal integration. In Peters, A. & Jones, E. G. (Eds.), Cerebral cortex. Vol. 4. Association and auditory cortices (pp. 151171). New York: Plenum Press.CrossRefGoogle Scholar
Gaensbauer, J. T. (1982). Regulation of emotional expression in infants from two contrasting caretak-ing environments. Journal of the American Academy of Child Psychiatry, 21, 163171.CrossRefGoogle ScholarPubMed
Gaensbauer, T. J., & Mrazek, D. (1981). Differences in the patterning of affective expression in infants. Journal of the American Academy of Child Psychiatry, 20, 673691.CrossRefGoogle ScholarPubMed
Gerschenson, L. E., & Rotello, R. J. (1992). Apoptosis: A different type of cell death. The Federation of American Societies For Experimental Biology Journal, 6, 24502455.CrossRefGoogle ScholarPubMed
Gilbert, P. (1992). Depression: The evolution of powerlessness. New York: Guilford Press.Google Scholar
Goldberg, E., & Bilder, R. M. (1987). The frontal lobes and hierarchical organization of cognitive control. In Perecman, E. (Ed.), The frontal lobes revisited (pp. 159187). Hillsdale, NJ: Erlbaum.Google Scholar
Goldman-Rakic, P. S. (1987). Circuitry of the primate prefrontal cortex and regulation of behavior by representational memory. In Plum, F. & Mount-castle, V. (Eds.), Handbook of physiology, Vol. 5 (pp. 373418). Bethesda, MD: American Physiological Society.Google Scholar
Goldsmith, H. H., & Campos, J. J. (1982). Toward a theory of infant temperament. In Emde, R. N. & Harmon, R. J. (Eds.), The development of attachment and affiliative systems (pp. 161193). New York: Plenum.CrossRefGoogle Scholar
Goyer, P. F., Konicki, P. E., & Schulz, S. C. (1994). Brain imaging in personality disorders. In Silk, K. R. (Ed.), Biological and neurobehavioral studies of borderline personality disorder (pp. 109125). Washington, DC: American Psychiatric Press.Google Scholar
Greenspan, S. I. (1981). Psychopathology and adaptation in infancy and early childhood. New York: International Universities Press.Google ScholarPubMed
Grings, W. W., & Dawson, M. E. (1978). Emotions and bodily responses. New York: Academic Press.Google Scholar
Grotstein, J. S. (1986). The psychology of powerlessness: Disorders of self-regulation and interactional regulation as a newer paradigm for psychopathology. Psychoanalytic Inquiry, 6, 93118.CrossRefGoogle Scholar
Haracz, J. L. (1985). Neural plasticity in schizophrenia. Schizophrenia Bulletin, 11, 191229.CrossRefGoogle Scholar
Hauser, K. F., McLaughlin, P. J., & Zagon, I. S. (1989). Endogenous opioid systems and the regulation of dendritic growth and spine formation. Journal of Comparative Neurology, 281, 1322.CrossRefGoogle ScholarPubMed
Hinde, R. (1990). Causes of social development from the perspective of an integrated developmental science. In Butterworth, G. & Bryant, P. (Eds.), Causes of development (pp. 161185). Hillsdale, NJ: Erlbaum.Google Scholar
Hofer, M. A. (1984). Relationships as regulators: A psychobiologic perspective on bereavement. Psychosomatic Medicine, 46, 183197.CrossRefGoogle ScholarPubMed
Hofer, M. A. (1990). Early symbiotic processes: Hard evidence from a soft place. In Glick, R. A. & Bone, S. (Eds.), Pleasure beyond the pleasure principle (pp. 5578). New Haven: Yale University Press.Google Scholar
Hofer, M. A. (1994). Hidden regulators in attachment, separation, and loss. Monographs of the Society for Research in Child Development, 59, 192207.CrossRefGoogle ScholarPubMed
Horn, G., & McCabe, B. J. (1984). Predispositions and preferences. Effects on imprinting of lesions to the chick brain. Animal Behavior, 32, 288292.CrossRefGoogle Scholar
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex — developmental changes and effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Izard, C. E., Hembree, E. A., & Huebncr, R. R. (1987). Infants' emotion expressions to acute pain: Developmental change and stability of individual differences. Developmental Psychology, 23, 105113.CrossRefGoogle Scholar
Izard, C. E., Porges, S. W., Simons, R. F., Haynes, O. M., Hyde, C., Parisi, M., & Cohen, B. (1991). Infant cardiac activity: Developmental changes and relations with attachment. Developmental Psychology, 27, 432439.CrossRefGoogle Scholar
Joseph, R. (1992). The right brain and the unconscious: Discovering the stranger within. New York: Plenum Press.CrossRefGoogle Scholar
Kalsbeek, A., Buijs, R. M., Hofman, M. A., Matthijssen, M. A. H., Pool, C. W., & Uylings, H. B. M. (1987). Effects of neonatal thermal lesioning of the mesocortical dopaminergic projection on the development of the rat prefrontal cortex. Developmental Brain Research, 32, 123132.CrossRefGoogle Scholar
Kathol, R. G., Jaeckle, R. S., Lopez, J. F., & Meller, W. H.(1989). Pathophysiology of HPA axis abnormalities in patients with major depression: An update. American Journal of Psychiatry, 146, 311317.Google ScholarPubMed
King, R. (1985). Motivational diversity and mesolimbic dopamine: An hypothesis concerning temperament. In Plutchik, R. & Kellerman, H. (Eds.), Emotion: Theory, research and experience, Vol. 3. New York: Academic Press.Google Scholar
Kobak, R. R., & Sceery, A. (1988). Attachment in late adolescence: Working models, affect regulation, and representations of self and others. Child Development, 59, 135146.CrossRefGoogle ScholarPubMed
Kolb, B. (1984). Functions of the frontal cortex in the rat: A comparative review. Brain Research Reviews, 8, 6598.CrossRefGoogle Scholar
Kostovic, I. (1990). Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Progress Brain Research, 85, 223239.CrossRefGoogle ScholarPubMed
Kotler, T., Buzwell, S., Romeo, Y., & Bowland, J. (1994). Avoidant attachment as a risk for health. British Journal of Medical Psychology, 67, 237245.CrossRefGoogle Scholar
Kraemer, G. W., Ebert, M. H., Schmidt, D. E., & Mckinney, W. T. (1991). Strangers in a strange land: A psychobiological study of infant monkeys before and after separation from real or inanimate mothers. Child Development, 62, 548566.CrossRefGoogle ScholarPubMed
Krystal, H. (1988). Integration and self-healing: Affect-trauma-alexithymia. Hillsdale, NJ: Analytic Press.Google Scholar
Lapierre, D., Braun, C. M. J., & Hodgins, S. (1995). Ventral frontal deficits in psychopathy: Neuropsychological test findings. Neuropsychologia, 33, 139151.CrossRefGoogle ScholarPubMed
Lauder, J. M., & Krebs, H. (1986). Do neurotransmitters, neurohumors, and hormones specify critical periods? In Greenough, W. T. & Juraska, J. M. (Eds.), Developmental neuropsychobiology (pp. 119174). Orlando: Academic Press.Google Scholar
Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion. American Psychologist, 46, 819834.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1989). Cognitive-emotional interactions in the brain. Cognition and Emotion, 3, 267289.CrossRefGoogle Scholar
Le Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiological Reviews, 71, 155234.CrossRefGoogle ScholarPubMed
Levitt, P., Rakic, P., & Goldman-Rakic, P. (1984). Region-specific distribution of catecholamine afferents in primate cerebral cortex: A flouresccnce histochemical analysis. Journal of Comparative Neurology, 227, 2336.CrossRefGoogle ScholarPubMed
Lewis, M., & Miller, S. M. (1990). Handbook of developmental psychopathology. New York: Plenum Press.CrossRefGoogle Scholar
Lewis, M. H., Gluck, J. P., Beauchamp, A. J., Keresztury, M. F., & Mailman, R. B. (1990). Long-term effects of early social isolation in Macaca mulatta: Changes in dopamine receptor function following apomorphine challenge. Brain Research, 513, 6773.CrossRefGoogle ScholarPubMed
Luria, A. R. (1980). Higher cortical functions in man (2nd ed.). New York: Basic Books.CrossRefGoogle Scholar
Mahler, M., Pine, F., & Bergman, A. (1975). The psychological birth of the human infant. New York: Basic Books.Google Scholar
Main, M., & Stadtman, J. (1981). Infant response to rejection of physical contact by the mother: Aggression, avoidance and conflict. Journal of the American Academy of Child Psychiatry, 20, 292307.CrossRefGoogle Scholar
Main, M., & Weston, D. R. (1982). Avoidance of the attachment figure in infancy: Descriptions and interpretations. In Parkes, C. M. & Stevenson-Hinde, J. (Eds.), The place of attachment in human behavior. New York: Basic Books.Google Scholar
Malatesta, C. Z., Culver, C., Tesman, J. R., & Shepard, B. (1989). The development of emotion expression during the first two years of life. Monographs of the Society for Research in Child Development, 54, 1103.CrossRefGoogle ScholarPubMed
Malatesta-Magai, C. (1991). Emotional Socialization: Its role in personality and developmental psychopathology. In Cicchetti, D. & Toth, S. L. (Eds.), Internalizing and externalizing expressions of dysfunction: Rochester symposium on developmental psychopathology. Vol. 2 (pp. 203224). Hillsdale, NJ: Erlbaum.Google Scholar
Martin, L. J., Spicer, D. M., Lewis, M. H., Gluck, J. P., & Cork, L. C. (1991). Social deprivation of infant rhesus monkeys alters the chemoarchitecture of the brain: I. Subcortical regions. Journal of Neuroscience, 11, 33443358.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Lewis, P. J., Regenold, W., & Wagner, H. N. Jr., (1994). Paralimbic hypoperfusion in unipolar depression. Journal of Nuclear Medicine, 35, 929934.Google ScholarPubMed
McCabe, P. M., & Schneiderman, N. (1985). Psychophysiologic reactions to stress. In Schneiderman, N. & Tapp, J. T. (Eds.), Behavioral medicine: The biophysical approach (pp. 99131). Hillsdale, NJ: Erlbaum.Google Scholar
Mesulam, M-M., & Geschwind, N. (1978). On the possible role of neocortex and its limbic connections in the process of attention in schizophrenia: Clinical cases of inattention in man and experimental anatomy in monkey. Journal of Psychiatric Research, 14, 249259.CrossRefGoogle ScholarPubMed
Mrzljak, L., Uylings, H. B. M., van Eden, C. G., & Judas, M. (1990). Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Progress in Brain Research, 85, 185222.CrossRefGoogle ScholarPubMed
Nauta, W. J. H. (1964). Some efferent connections of the prefrontal cortex in the monkey. In Warren, J. M. & Akert, K. (Eds.), The frontal granular cortex and behavior (pp. 397407). New York: McGraw-Hill.Google Scholar
Nauta, W. J. H., & Domesick, V. B. (1982). Neural associations of the limbic system. In Beckman, A. L. (Ed.), The neural basis of behavior (pp. 175206). New York: SP Medical and Scientific Books.CrossRefGoogle Scholar
Neafsey, E. J. (1990). Prefrontal cortical control of the autonomic nervous system: Anatomical and physiological observations. Progress in Brain Research, 85, 147166.CrossRefGoogle ScholarPubMed
Nelson, C. A. (1994). Neural bases of infant temperament. In Bates, J. E. & Wachs, T. D. (Eds.), Temperament: Individual differences at the interface of biology and behavior (pp. 4782). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Oatley, K., & Jenkins, J. M. (1992). Human emotions: Function and dysfunction. Annual Review of Psychology, 43, 5585.CrossRefGoogle ScholarPubMed
Orlinsky, D. E., & Howard, K. I. (1986). Process and outcome in psychotherapy. In Garfield, S. L. & Bergin, A. E. (Eds.), Handbook of psychotherapy and behavior change (3rd ed.) (pp. 311381). New York: Wiley.Google Scholar
Pandya, D. N., & Barnes, C. L. (1987). Architecture and connections of the frontal lobes. In Perecman, E. (Ed.), The frontal lobes revisited (pp. 4172). Hillsdale, NJ: Erlbaum.Google Scholar
Petrovich, S. B., & Gewirtz, J. L. (1985). The attachment learning process and its relation to cultural and biological evolution: Proximate and ultimate considerations. In Reite, M. & Field, T. (Eds.), The psychobiology of attachment and separation (pp. 259291). Orlando: Academic Press.CrossRefGoogle Scholar
Pipp, S., & Harmon, R. J. (1987). Attachment as regulation: A commentary. Child Development, 58, 648652.CrossRefGoogle Scholar
Plomin, R. (1983). Developmental behavioral genetics. Child Development, 54, 252259.CrossRefGoogle ScholarPubMed
Porges, S. W., Doussard-Roosevelt, J. A., & Maiti, A. K. (1994). Vagal tone and the physiological regulation of emotion. Monographs of the Society for Research in Child Development, 59, 167186.CrossRefGoogle ScholarPubMed
Post, R. M., Weiss, S. R. B., & Leverich, G. S. (1994). Recurrent affective disorder: Roots in developmental neurobiology and illness progression based on changes in gene expression. Development and Psychopathology, 6, 781813.CrossRefGoogle Scholar
Powles, W. E. (1992). Human development and homeostasis. Madison, CT: International Universities Press.Google Scholar
Pribram, K. H. (1987). The subdivisions of the frontal cortex revisited. In Perecman, E. (Ed.), The frontal lobes revisited (pp. 1139). Hillsdale, NJ: Erlbaum.Google Scholar
Rabinowicz, T. (1979). The differentiate maturation of the human cerebral cortex. In Falkner, F. & Tanner, J. M. (Eds.), Human growth, Vol. 3, Neurobiology and nutrition (pp. 97103). New York: Plenum Press.Google Scholar
Raleigh, M. J., & Brammer, G. L. (1993). Individual differences in serotonin-2 receptors and social behavior in monkeys. Society for Neuroscience Abstracts, 19, 592.Google Scholar
Rauch, S. L., Savage, C. R., Alpert, N. M., Miguel, E. C., Baer, L., Breiter, H. C., Fischman, A. J., Manzo, P. A., Moretti, C., & Jenike, M. A. (1995). A positron emission tomographic study of simple phobic symptom provocation. Archives of General Psychiatry, 52, 2028.CrossRefGoogle ScholarPubMed
Reite, M., & Capitanio, J. P. (1985). On the nature of social separation and attachment. In Reite, M. & Field, T. (Ed.), The psychobiology of attachment and separation (pp. 223255). Orlando: Academic Press.CrossRefGoogle Scholar
Robbins, T. W., & Everitt, B. J. (1982). Functional studies of the central catecholamines. International Review of Neurobiology, 23, 303365.CrossRefGoogle ScholarPubMed
Rolls, E. T. (1986). Neural systems involved in emotion in primates. In Plutchik, R. & Kellerman, H. (Eds,), Emotion: Theory, research, and practice Vol. 3 (pp. 125143). Orlando: Academic Press.Google Scholar
Rosenblum, L. A. (1987). Influences of environmental demand on maternal behavior and infant development. In Krasnegor, N. A., Blass, E. M., Hofer, M. A., & Smotherman, W. P. (Eds.), Perinatal development: A psychobiological perspective (pp. 377395). Orlando: Academic Press.Google Scholar
Rosenblum, L. A., Coplan, J. D., Friedman, S., Basoff, T., Gorman, J. M., & Andrews, M. W. (1994). Adverse early experiences affect noradrenergic and serotonergic functioning in adult primates. Biological Psychiatry, 35, 221227.CrossRefGoogle ScholarPubMed
Rosenzweig, M. R., Bennet, E. L., & Diamond, M. C. (1972). Brain changes in response to experience. Scientific American, 226, 2229.CrossRefGoogle Scholar
Rothbart, M. K., Derryberry, D., & Posner, M. I. (1994). A psychobiological approach to the development of temperament. In Bates, J. E. & Wachs, T. D. (Eds.), Temperament: Individual differences at the interface of biology and behavior (pp. 83116). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Rothbart, M. K., Taylor, S. B., & Tucker, D. M. (1989). Right-sided facial asymmetry in infant emotional expression. Neuropsychologia, 27, 675687.CrossRefGoogle ScholarPubMed
Rutter, M. (1995). Relationships between mental disorders in childhood and adulthood. Acta Psychiatrica Scandinavica, 91, 7385.CrossRefGoogle ScholarPubMed
Scherer, K. R. (1986). Vocal affect expression: A review and a model for future research. Psychological Bulletin, 99, 143165.CrossRefGoogle Scholar
Schore, A. N. (1991). Early superego development: The emergence of shame and narcissistic affect regulation in the practicing period. Psychoanalysis and Contemporary Thought, 14, 187250.Google Scholar
Schore, A. N. (1994). Affect regulation and the origin of the self: The neurobiology of emotional development. Hillsdale, NJ: Erlbaum.Google Scholar
Schwartz, G. E. (1990). Psychobiology of repression and health: A systems approach. In Singer, J. L. (Ed.), Repression and dissociation (pp. 405434). Chicago: The University of Chicago Press.Google Scholar
Seidman, L. J., Oscar-Berman, M., Kalinowski, A. G., Ajilore, O., Kremen, W. S., Faraone, S. V., & Tsuang, M. J. (1995). Experimental and clinical neuropsychological measures of prefrontal dysfunction in schizophrenia. Neuropsychology, 9, 481490.CrossRefGoogle Scholar
Semple, W. E., Goyer, P., McCormick, R., Morris, E., Compton, B., Berridge, M., Miraldi, F., & Schulz, S. C. (1992). Increased orbital frontal cortex blood flow and hippocampal abnormality in PTSD: A pilot PET study. Biological Psychiatry, 31, 129A.Google Scholar
Sesack, S. R., & Pickel, V. M. (1992). Prefrontal conical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. Journal of Comparative Neurology, 320, 145160.CrossRefGoogle Scholar
Singer, W. (1986). Neuronal activity as a shaping factor in postnatal development of visual cortex. In Greenough, W. T. & Juraska, J. M. (Eds.), Developmental neuropsychobiology (pp. 271293). Orlando: Academic Press.Google Scholar
Sroufe, L. A. (1989). Relationships, self, and individual adaptation. In Samcroff, A. J. & Emde, R. N. (Eds.), Relationship disturbances in early childhood (pp. 7094). New York: Basic Books.Google Scholar
Starkstein, S. E., Boston, J. D., & Robinson, R. F. (1988). Mechanisms of mania after brain injury: 12 case reports and review of the literature. Journal of Nenous and Mental Disease, 176, 87100.CrossRefGoogle ScholarPubMed
Steklis, H. D., & Kling, A. (1985). Neurobiology of affiliative behavior in nonhuman primates. In Reite, M. & Field, T. (Ed.), The psychobiology of attachment and separation (pp. 93134). Orlando: Academic Press.CrossRefGoogle Scholar
Stern, D. N. (1985). The interpersonal world of the infant. New York: Basic Books.Google Scholar
Strauss, M. S. (1979). Abstraction of prototypical information by adults and 10 month old infants. Journal of Experimental Psychology: Human Learning and Memory, 5, 618632.Google ScholarPubMed
Stuss, D. T., Kaplan, E. F., Benson, D. F., Weir, W. S., Chiulli, S., & Sarazin, F. F. (1982). Evidence for the involvement of orbitofrontal cortex in memory functions: An interference effect. Journal of Comparative Physiological Psychology, 96, 913925.CrossRefGoogle Scholar
Thomas, A., & Chess, S. (1982). The reality of difficult temperament. Merrill-Palmer Quarterly, 28, 120.Google Scholar
Thompson, R. A. (1990). Emotion and self-regulation. Nebraska symposium on motivation (pp. 367467). Lincoln: University of Nebraska Press.Google Scholar
Tomkins, S. (1963). Affect/imagery/consciousness: Vol. 2. The negative affects. New York: Springer.Google Scholar
Trad, P. V. (1986). Infant depression. New York: Springer-Verlag.CrossRefGoogle Scholar
Trendelenburg, U. (1963). Supersensitivity and subsensitivity to sympathomimetic amines. Pharmacological Reviews, 15, 225276.Google ScholarPubMed
Trevarthen, C. (1993). The self born in intersubjectivity: The psychology of an infant communicating. In Neisser, U. (Ed.), The perceived self: Ecological and interpersonal sources of self-knowledge (pp. 121173). New York: Cambridge University Press.Google Scholar
Trevarthen, C., & Aitken, K. J. (1994). Brain development, infant communication, and empathy disorders: Intrinsic factors in child mental health. Development and Psychopathology, 6, 597633.CrossRefGoogle Scholar
Tronick, E. Z. (1989). Emotions and emotional communication in infants. American Psychologist, 44, 112119.CrossRefGoogle ScholarPubMed
Tucker, D. M. (1992). Developing emotions and cortical networks. In Gunner, M. R. & Nelson, C. A. (Eds.), Minnesota symposium on child psychology. Vol. 24, Developmental behavioral neuroscience (pp. 75128). Hillsdale, NJ: Erlbaum.Google Scholar
van der Kolk, B. A. (1987). Psychological trauma. Washington, DC: American Psychiatric Press.Google Scholar
van der Kolk, B. A., & Fisler, R. E. (1994). Childhood abuse and neglect and loss of self-regulation. Bulletin of the Menninger Clinic, 58, 145168.Google ScholarPubMed
Voeller, K. K. S. (1986). Right-hemisphere deficit syndrome in children. American Journal of Psychiatry, 143, 10041009.Google ScholarPubMed
Volkow, N. D., Fowler, J. S., Wolf, A. P., Hitze-mann, R., Dewey, S., Bendriem, B., Alpert, R., & Hoff, A. (1991). Changes in brain glucose metabolism in cocaine dependence and withdrawal. American Journal of Psychiatry, 148, 621626.Google ScholarPubMed
Wilson, A., Passik, S. D., & Faude, J. P. (1990). Self-regulation and its failures. In Masling, J. (Ed.), Empirical studies of psychoanalytic theory, Vol. 3 (pp. 149213). Hillsdale, NJ: Analytic Press.Google Scholar
Winnicott, D. W. (1958). The capacity to be alone. International Journal of Psycho-Analysis, 39, 416420.Google ScholarPubMed
Winnicott, D. W. (1971). Mirror-role of mother and family in child development. In Playing and reality. New York: Basic Books.Google Scholar
Winnicott, D. W. (1986). Home is where we start from. New York: Norton.Google Scholar
Wittling, W., & Schweiger, E. (1993). Neuroendocrine brain asymmetry and physical complaints. Neurop-sychologia, 31, 591608.CrossRefGoogle ScholarPubMed
Wright, K. (1991). Vision and separation: Between mother and baby. Northvale, NJ: Jason Aronson.Google Scholar
Yasui, Y., Itoh, K., Kaneko, T., Shigcmoto, R., & Mizuno, N. (1991). Topographical projections from the cerebral cortex to the nucleus of the solitary tract in the cat. Experimental Brain Research, 85, 7584.CrossRefGoogle ScholarPubMed
263
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *